Open Access
Issue
EPJ Applied Metamaterials
Volume 4, 2017
Article Number 5
Number of page(s) 6
DOI https://doi.org/10.1051/epjam/2017002
Published online 15 February 2017
  • H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices, Nature Materials 9 (2010) 205–213. [CrossRef] [PubMed]
  • G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends, Nature Materials 4 (2005) 864–868. [CrossRef]
  • A. Kurs, A. Karalis, R. Moffatt, J.D. Joannopoulos, P. Fisher, M. Soljacic, Wireless power transfer via strongly coupled magnetic resonances, Science 317 (2007) 83–86. [CrossRef] [MathSciNet] [PubMed]
  • A.P. Sample, D.A. Meyer, J.R. Smith Analysis, Experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer, IEEE Transactions on Antennas and Propagation 58 (2011) 544–554.
  • N.M. Estakhri, A. Alu, Manipulating optical reflections using engineered nanoscale metasurfaces, Physical Review B 89 (2014) 235419. [CrossRef]
  • Y. Radi, V.S. Asadchy, S.A. Tretyakov, Tailoring reflections from thin composite metamirrors, IEEE Transactions on Antennas and Propagation 62 (2014) 3749–3760. [CrossRef]
  • Y. Radi, C.R. Simovski, S.A. Tretyakov, Thin perfect absorbers for electromagnetic waves: theory, design, and realizations, Physical Review Applied 3 (2015) 037001. [CrossRef]
  • N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla, Perfect metamaterial absorber, Physical Review Letters 100 (2008) 207402. [CrossRef] [PubMed]
  • L.L. Spada, L. Vegni, Metamaterial-based wideband electromagnetic wave absorber, Optics Express 6 (2016) 5763–5772. [CrossRef]
  • Y.R. Padooru, A.B. Yakovlev, C.S.R. Kaipa, G.W. Hanson, F. Medina, F. Mesa, A.W. Glisson, New absorbing boundary conditions and analytical model for multilayered mushroom-type metamaterials: applications to wideband absorbers, IEEE Transactions on Antennas and Propagation 60 (2012) 5727–5742. [CrossRef]
  • X. Chen, L. Liu, P.Y. Yu, S.S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals, Science 331 (2011) 746–750. [CrossRef] [PubMed]
  • C.A. Valagiannopoulos, A. Tukiainen, T. Aho, T. Niemi, M. Guina, S.A. Tretyakov, C.R. Simovski, Perfect magnetic mirror and simple perfect absorber in the visible spectrum, Physical Review B 91 (2015) 115305. [CrossRef]
  • B. Wu, H.M. Tuncer, M. Naeem, B. Yang, M.T. Cole, W.I. Milne, Y. Hao, Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz, Scientific Reports 6 (2016) 29363. [CrossRef]
  • C.A. Valagiannopoulos, S.A. Tretyakov, Symmetric absorbers realized as gratings of PEC cylinders covered by ordinary dielectrics, IEEE Transactions on Antennas and Propagation 62 (2014) 5089–5098. [CrossRef]
  • Y.I. Bobrovnitskii, Impedance theory of sound absorption: the best absorber and the black body, Acoustical Physics 52 (2006) 638–647. [CrossRef]
  • E.E. Narimanov, A.V. Kildishev, Optical black hole: Broadband omnidirectional light absorber, Applied Physics Letters 95 (2009) 041106. [CrossRef]
  • S.I. Maslovski, C.R. Simovski, S.A. Tretyakov, Overcoming black body radiation limit in free space: metamaterial superemitter, New Journal of Physics 18 (2016) 013034. [CrossRef]
  • C.A. Valagiannopoulos, J. Vehmas, C.R. Simovski, S.A. Tretyakov, S.I. Maslovski, Electromagnetic energy sink, Physical Review B 92 (2015) 245402. [CrossRef]
  • S.D. Gedney, An anisotropic perfectly matched layer – absorbing medium for the truncation of FDTD lattices, IEEE Transactions Antennas and Propagation 44 (1996) 1630–1639. [CrossRef]
  • C.A. Valagiannopoulos, M.S. Mirmoosa, I.S. Nefedov, S.A. Tretyakov, C.R. Simovski, Hyperbolic-metamaterial antennas for broadband enhancement of dipole emission to free space, Journal of Applied Physics 116 (2014) 163106. [CrossRef]
  • C.A. Valagiannopoulos, How non-reciprocal is an effective permittivity matrix?, Microwave and Optical Technology Letters 56 (2014) 9. [CrossRef]
  • C.A. Valagiannopoulos, On examining the influence of a thin dielectric strip posed across the diameter of a penetrable radiating cylinder, Progress in Electromagnetics Research C 3 (2008) 203–214. [CrossRef]
  • C.A. Valagiannopoulos, S.A. Tretyakov, Theoretical concepts of unlimited-power reflectors, absorbers, and emitters with conjugately matched layers, Physical Review B 94 (2016) 125117. [CrossRef]
  • C.A. Valagiannopoulos, Electromagnetic scattering of the field of a metamaterial slab antenna by an arbitrarily positioned cluster of metallic cylinders, Progress in Electromagnetics Research 114 (2011) 55–66. [CrossRef]
  • J.M. Pitarke, V.M. Silkin, E.V. Chulkov, P.M. Echenique, Theory of surface plasmons and surface-plasmon polaritons, Reports on Progress in Physics 70 (2007) 1–87. [CrossRef]
  • J. Polo, T. Mackay, A. Lakhtakia, Electromagnetic surface waves: a modern perspective, Elsevier, New York, 2013.
  • R. Yang, Y. Hao, An accurate control of the surface wave using transformation optics, Optics Express 20 (2012) 9341. [CrossRef]
  • S. Xua, H. Xu, H. Gao, Y. Jianga, F. Yuf, J.D. Joannopoulos, M. Soljacic, H. Chena, H. Sunc, B. Zhang, Broadband surface-wave transformation cloak, Proceedings of the National Academy of Sciences of the United States of America 112 (2015) 7635–7638. [CrossRef]
  • L. La Spada, T.M. McManus, A. Dyke, S. Haq, L. Zhang, Q. Cheng, Y. Hao, Surface wave cloak from graded refractive index nanocomposites, Scientific Reports 6 (2016) 29363. [CrossRef]