Open Access
Issue
Acta Acust.
Volume 5, 2021
Article Number 7
Number of page(s) 19
Section Auditory Quality of Systems
DOI https://doi.org/10.1051/aacus/2020032
Published online 13 January 2021
  • R.H. Lyon: An introduction to sound quality. Journal of Sound and Vibration 6 (2003) 6. [Google Scholar]
  • M. Gauthier: Identification et hiérarchisation des sources et chemins de transfert vibro-acoustiques d’un véhicule récréatif. Mémoire de maîtrise. Université de Sherbrooke, QC, Canada, 2017. [Google Scholar]
  • J. Blauert, U. Jekosch: Sound-quality evaluation-a multi-layered problem. Acta Acustica United With Acustica 83, 5 (1997) 747–753. [Google Scholar]
  • N. Otto, S. Amman, C. Eaton, S. Lake: Guidelines for jury evaluations of automotive sounds. Journal of Sound and Vibration (2001) 1–14. [Google Scholar]
  • S. Chen, D. Wang: Vehicle interior sound quality analysis by using grey relational analysis. SAE International Journal of Passenger Cars Mechanical Systems 7, 1 (2014) 355–366. [CrossRef] [Google Scholar]
  • T.G. Kim, S.-K. Lee, H.H. Lee: Characterization and quantification of luxury sound quality in premium-class passenger cars. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 223, 3 (2009) 343–353. [CrossRef] [Google Scholar]
  • R. Guski: Psychological methods for evaluating sound quality and assessing acoustic information. Acta Acustica United With Acustica 83, 5 (1997) 765–774. [Google Scholar]
  • G. Lorho: Individual vocabulary profiling of spatial enhancement systems for stereo headphone reproduction. Presented at the AES 119th Convention, New York, USA, 2005. [Google Scholar]
  • T. Lokki, J. Pätynen, A. Kuusinen, H. Vertanen, S. Tervo: Concert hall acoustics assessment with individually elicited attributes. Journal of the Acoustical Society of America 194, 2 (2011) 835–849. [CrossRef] [Google Scholar]
  • C.E. Osgood: The nature and measurement of meaning. Psychological Bulletin 49, 3 (1952) 197–237. [CrossRef] [Google Scholar]
  • D. Dal Palù, E. Buiatti, G.E. Puglisi, O. Houix, P. Susini, C. De Giorgi, A. Astolfi: The use of semantic differential scales in listening tests: A comparison between context and laboratory test conditions for the rolling sounds of office chairs. Applied Acoustics 127 (2017) 270–283. [CrossRef] [Google Scholar]
  • G. Von Bismarck: Timbre of steady sounds: Factorial investigation of its verbal attributes. Acustica 30 (1974) 146–159. [Google Scholar]
  • P. Susini, O. Houix, N. Misdariis, B. Smith, S. Langlois: Instruction’s effect on semantic scale ratings of interior car sounds. Applied Acoustics 70, 3 (2009) 389–403. [CrossRef] [Google Scholar]
  • R.A. Kendall, E.C. Carterette: Verbal attributes of simultaneous wind instrument timbres. I – von Bismarck’s adjectives. Music Perception 4 (1992) 185–214. [CrossRef] [Google Scholar]
  • T. Lageat, S. Czellar, G. Laurent: Engineering hedonic attributes to generate perceptions of luxury: Consumer perception of an everyday sound. Marketing Letters 14, 2 (2003) 97–109. [CrossRef] [Google Scholar]
  • D. Dal Palù, B. Lerma, L.A. Grosso, L. Shtrepi, M. Gasparini, C. De Giorgi, A. Astolfi: Sensory evaluation of the sound of rolling office chairs: An exploratory study for sound design. Applied Acoustics 130 (2018) 195–203. [CrossRef] [Google Scholar]
  • M.E. Altinsoy, U. Jekosch, The semantic space of vehicle sounds: Developing a semantic differential with regard to customer perception. Journal of the Audio Engineering Society 60, 1/2 (2012) 13–20. [Google Scholar]
  • T.H. Pedersen, N. Zacharov: How many psychoacoustic attributes are needed? Proceedings of Euronoise 2008, Paris, 2008. [Google Scholar]
  • J. Delarue, B. Lawlor, M. Rogeaux: Rapid Sensory Profiling Techniques: Applications in New Product Development and Consumer Research. Elsevier, 2014. [Google Scholar]
  • H.T. Lawless, H. Heymann: Sensory Evaluation of Food Principles and Practices. Springer, NY, 2010. [CrossRef] [Google Scholar]
  • P. Varela, G. Ares: Sensory profiling, the blurred line between sensory and consumer science. A review of novel methods for product characterization. Food Research International 48, 2 (2012) 893–908. [CrossRef] [Google Scholar]
  • K.A. Moussaoui, P. Varela: Exploring consumer product profiling techniques and their linkage to a quantitative descriptive analysis. Food Quality and Preference 21, 8 (2010) 1088–1099. [CrossRef] [Google Scholar]
  • J. Delarue, J.-M. Sieffermann: Sensory mapping using Flash profile. Comparison with a conventional descriptive method for the evaluation of the flavour of fruit dairy products. Food Quality and Preference 15, 4 (2004) 383–392. [CrossRef] [Google Scholar]
  • H. Stone, J.L. Sidel: 6 – Descriptive Analysis, Sensory Evaluation Practices. Food Science and Technology, 3rd ed. Academic Press, 2004, pp. 201–245. [Google Scholar]
  • F. Bergeron, C. Astruc, A. Berry, P. Masson: Sound quality assessment of internal automotive road noise using sensory science. Acta Acustica United With Acustica 96, 3 (2010) 580–588. [CrossRef] [Google Scholar]
  • M. Wankling, B. Fazenda, W.J. Davies: The assessment of low-frequency room acoustic parameters using descriptive analysis. Journal of the Audio Engineering Society 60, 5 (2012) 325–337. [Google Scholar]
  • N. Kaplanis, S. Bech, S. Tervo, J. Pätynen, T. Lokki, T. Waterschoot, S.H. Jensen: A rapid sensory analysis method for perceptual assessment of automotive audio. Journal of the Audio Engineering Society 65, 1/2 (2017) 130–146. [CrossRef] [Google Scholar]
  • J. Berg, F. Rumsey: Identification of quality attributes of spatial audio by repertory grid technique. Journal of the Audio Engineering Society 54, 5 (2006) 365–379. [Google Scholar]
  • S. Le Bagousse, M. Paquier, C. Colomes: Categorization of sound attributes for audio quality assessment – a lexical study. Journal of the Audio Engineering Society 62, 11 (2014) 736–747. [CrossRef] [Google Scholar]
  • V.-V. Mattila: Semantic analysis of speech quality in mobile communications: descriptive language development and mapping to acceptability. Food Quality and Preference 14, 5 (2003) 441–453. [CrossRef] [Google Scholar]
  • A. Nykänen: Methods for product sound design. Doctoral dissertation, Luleå Tekniska Universitet, 2008. [Google Scholar]
  • G. Lemaitre, P. Susini: Timbre, sound quality, and sound design, in Timbre: Acoustics, Perception, and Cognition Siedenburg K, Saitis C, McAdams S, Popper A, Fay R, Editors Springer Handbook of Auditory Research 69. 2019, pp. 245–272. [CrossRef] [Google Scholar]
  • K. Genuit, A. Fiebig: Sound Design of Electric Vehicles – Challenges and Risks. InterNoise, Melbourne, 2014. [Google Scholar]
  • L. Langeveld, R. van Egmond, R. Jansen, E. Özcan: Product sound design: Intentional and consequential sounds, in Advances in Industrial Design Engineering Coelho DA, Editor IntechOpen. 2013. [Google Scholar]
  • P. Davies: Perception-based engineering: Integrating sound perception into engineering design. Presented at the InterNoise 47th I-INCE, Chicago, 2018. [Google Scholar]
  • E. Parizet, N. Hamzaoui, J. Jacquemoud: Noise assessment in a high-speed train. Applied Acoustics 63, 10 (2002) 1109–1124. [CrossRef] [Google Scholar]
  • P. Susini, O. Houix, L. Seropian, G. Lemaitre: Is loudness part of a sound recognition process? JASA 146, 2 (2019) EL172–EL176. [CrossRef] [Google Scholar]
  • S.-H. Shin, J.-G. Ih, T. Hashimoto, S. Hatano: Sound quality evaluation of the booming sensation for passenger cars. Applied Acoustics 70, 2 (2009) 309–320. [CrossRef] [Google Scholar]
  • H. Fastl, E. Zwicker: Psychoacoustics: Facts and Models, 3rd ed. Springer, Berlin and Heidelberg 22, 2007. [CrossRef] [Google Scholar]
  • G. Kwon, H. Jo, Y.J. Kang: Model of psychoacoustic sportiness for vehicle interior sound: Excluding loudness. Applied Acoustics 136 (2018) 16–25. [CrossRef] [Google Scholar]
  • B. Efron: Bootstrap methods: Another look at the jackknife. The Annals of Statistics 7, 1 (1979) 1–26. [CrossRef] [MathSciNet] [Google Scholar]
  • B. Efron, R. Tibshirani: An Introduction to the Bootstrap. Chapman & Hall, 1993. [Google Scholar]
  • P. Hall: The Bootstrap and Edgeworth Expansion. Springer Series in Statistics. New York, Springer-Verlag, 1992. [CrossRef] [Google Scholar]
  • C.B. Barber, D.P. Dobkin, H.T. Huhdanpaa: The Quickhull algorithm for convex hulls. ACM Transactions on Mathematical Software 22, 4 (1996) 469–483. [CrossRef] [MathSciNet] [Google Scholar]
  • R. Palm: Utilisation du bootstrap pour les problèmes statistiques liés à l’estimation des paramètres. BASE 6, 3 (2002) 143–153. [Google Scholar]
  • I.T. Jolliffe: Principal Component Analysis, 2nd ed. Springer Series in Statistics. Springer-Verlag, New York, 2002. [Google Scholar]
  • W.J. Krzanowski: Principles of Multivariate Analysis. Clarendon Press, Oxford, 2000. [Google Scholar]
  • C. Duchesne: Multivariate image analysis in mineral processing, in Advanced Control and Supervision of Mineral Processing Plants Sbárbaro D, del Villar R, Editors. Advances in Industrial Control. London, Springer. 2010, pp. 85–142. [CrossRef] [Google Scholar]
  • D.C. Montgomery: Design and Analysis of Experiments, 8th ed. John Wiley and Sons, 2013. [Google Scholar]
  • S.S. Shapiro, M.B. Wilk: An analysis of variance test for normality (complete samples). Biometrika 52, 3/4 (1965) 591–611. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Friedman: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. The Journal of the American Statistical Association 32, 200 (1937) 675–701. [CrossRef] [Google Scholar]
  • R. Broand, K.S. Age: Principal component analysis. RSC. Analytical Methods 6, 9 (2014) 2812–2831. [CrossRef] [Google Scholar]