- Q. Shen, W. Jin, G. Yang, A.W. Rodriguez, M.H. Mikkelsen, Active control of multiple, simultaneous nonlinear optical processes in plasmonic nanogap cavities, ACS Photonics 7, 901 (2020) [Google Scholar]
- R. Sarma, D. de Ceglia, N. Nookala, M.A. Vincenti, S. Campione, O. Wolf, M. Scalora, M.B. Sinclair, M.A. Belkin, I. Brener, Broadband and efficient second-harmonic generation from a hybrid dielectric metasurface/semiconductor quantum-well structure, ACS Photonics 6, 1458 (2019) [CrossRef] [Google Scholar]
- Y. Zeng, H. Qian, M.J. Rozin, Z. Liu, A.R. Tao, Enhanced second harmonic generation in double-resonance colloidal metasurfaces, Adv. Funct. Mater. 28, 1803019 (2018) [CrossRef] [Google Scholar]
- A.R. Echarri, J.D. Cox, R. Yu, F.J.G. de Abajo, Enhancement of nonlinear optical phenomena by localized resonances, ACS Photonics 5, 1521 (2018) [CrossRef] [Google Scholar]
- Q. Shen, T.B. Hoang, G. Yang, V.D. Wheeler, M.H. Mikkelsen, Probing the origin of highly-efficient thirdharmonic generation in plasmonic nanogaps, Opt. Express 26, 20718 (2018) [CrossRef] [Google Scholar]
- S. Guddala, S.A. Ramakrishna, Optical limiting by nonlinear tuning of resonance in metamaterial absorbers, Opt. Lett. 41, 5150 (2016) [CrossRef] [Google Scholar]
- T. Shibanuma, G. Grinblat, P. Albella, S.A. Maier, Efficient third harmonic generation from metal – dielectric hybrid nanoantennas, Nano Lett. 17, 2647 (2017) [CrossRef] [Google Scholar]
- J. Lee, M. Tymchenko, C. Argyropoulos, P.-Y. Chen, F. Lu, F. Demmerle, G. Boehm, M.-C. Amann, A. Alù, M.A. Belkin, Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions, Nature (London) 511, 65 (2014) [CrossRef] [Google Scholar]
- F. Wang, A.B.F. Martinson, H. Harutyunyan, Efficient nonlinear metasurface based on nonplanar plasmonic nanocavities, ACS Photonics 4, 1188 (2017) [CrossRef] [Google Scholar]
- A. Noor, A.R. Damodaran, I.-H. Lee, S.A. Maier, S.-H. Oh, C. Ciracì, Mode-matching enhancement of second-harmonic generation with plasmonic nanopatch antennas, ACS Photonics 7, 3333 (2020) [CrossRef] [Google Scholar]
- M. Hentschel, B. Metzger, B. Knabe, K. Buse, H. Giessen, Linear and nonlinear optical properties of hybrid metallic–dielectric plasmonic nanoantennas, Beilstein J. Nanotechnol. 7, 111 (2016) [CrossRef] [Google Scholar]
- E. Barakat, M.-P. Bernal, F.I. Baida, Theoretical analysis of enhanced nonlinear conversion from metallo-dielectric nanostructures, Opt. Express 20, 16258 (2012) [CrossRef] [Google Scholar]
- J. Deng, Y. Tang, S. Chen, K. Li, A.V. Zayats, G. Li, Giant enhancement of second-order nonlinearity of epsilon-nearzero medium by a plasmonic metasurface, Nano Lett. 20, 5421 (2020) [CrossRef] [Google Scholar]
- M.P. Nielsen, X. Shi, P. Dichtl, S.A. Maier, R.F. Oulton, Giant nonlinear response at a plasmonic nanofocus drives efficient four-wave mixing, Science 358, 1179 (2017) [CrossRef] [Google Scholar]
- A.V. Krasavin, P. Ginzburg, A.V. Zayats, Free-electron optical nonlinearities in plasmonic nanostructures: A review of the hydrodynamic description, Laser Photon. Rev. 12, 1700082 (2018) [CrossRef] [Google Scholar]
- A. Chizmeshya, E. Zaremba, Second-harmonic generation at metal surfaces using an extended Thomas Fermi von Weizsacker theory, Phys. Rev. B 37, 2805 (1988) [CrossRef] [Google Scholar]
- N. Crouseilles, P.-A. Hervieux, G. Manfredi, Quantum hydrodynamic model for the nonlinear electron dynamics in thin metal films, Phys. Rev. B 78, 155412 (2008) [CrossRef] [Google Scholar]
- M. Scalora, M.A. Vincenti, D. de Ceglia, V. Roppo, M. Centini, N. Akozbek, M.J. Bloemer, Second- and third-harmonic generation in metal-based structures, Phys. Rev. A 82, 043828 (2010) [CrossRef] [Google Scholar]
- Y. Pavlyukh, J. Berakdar, W. Hubner, Semi – classical approximation for second-harmonic generation in nanoparticles, New J. Phys. 14, 093044 (2012) [CrossRef] [Google Scholar]
- C. Ciracì, E. Poutrina, M. Scalora, D.R. Smith, Origin of second-harmonic generation enhancement in optical split-ring resonators, Phys. Rev. B 85, 201403 (2012) [CrossRef] [Google Scholar]
- A. Boltasseva, H.A. Atwater, Low-loss plasmonic metamaterials, Science 331, 290 (2011) [CrossRef] [Google Scholar]
- G.V. Naik, V.M. Shalaev, A. Boltasseva, Alternative plasmonic materials: beyond gold and silver, Adv. Mater. 25, 3264 (2013) [CrossRef] [Google Scholar]
- T. Taliercio, P. Biagioni, Semiconductor infrared plasmonics, Nanophotonics 8, 949 (2019) [CrossRef] [Google Scholar]
- Y. Su, W. Wang, X. Hu, H. Hu, X. Huang, Y. Wang, J. Si, X. Xie, B. Han, H. Feng, Q. Hao, G. Zhu, T. Duan, W. Zhao, 10 Gbps DPSK transmission over free-space link in the midinfrared, Opt. Express 26, 34515 (2018) [CrossRef] [Google Scholar]
- F. De Luca, M. Ortolani, C. Ciracì, Free electron nonlinearities in heavily doped semiconductors plasmonics, Phys. Rev. B 103, 115305 (2021) [CrossRef] [Google Scholar]
- W. Yan, Hydrodynamic theory for quantum plasmonics: linear response dynamics of the inhomogeneous electron gas, Phys. Rev. B 91, 115416 (2015) [CrossRef] [Google Scholar]
- D. de Ceglia, M. Scalora, M.A. Vincenti, S. Campione, K. Kelley, E.L. Runnerstrom, J.-P. Maria, G.A. Keeler, and T.S. Luk, Viscoelastic optical nonlocality of low-loss epsilon-nearzero nanofilms, Sci. Rep. 8, 9335 (2018) [CrossRef] [Google Scholar]
- S. Raza, S.I. Bozhevolnyi, M. Wubs, N.A. Mortensen, Nonlocal optical response in metallic nanostructures, J. Phys.: Condens. Matter 27, 183204 (2015) [CrossRef] [Google Scholar]
- C. Ciracì, F. Della Sala, Quantum hydrodynamic theory for plasmonics: impact of the electron density tail, Phys. Rev. B 93, 205405 (2016) [CrossRef] [Google Scholar]
- COMSOL MULTIPHYSICS, www.comsol.com. [Google Scholar]
- F. De Luca, C. Ciracì, Difference-frequency generation in plasmonic nanostructures: A parameter-free hydrodynamic description, J. Opt. Soc. Am. B 36, 1979 (2019) [CrossRef] [Google Scholar]
- M. Celebrano, X. Wu, M. Baselli, S.G. Mann, P. Biagioni, A. Locatelli, C. de Angelis, G. Cerullo, R. Osellame, B. Hecht,L. Duò, F. Ciccacci, M. Finazzi, Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation, Nat. Nanotechnol. 10, 412 (2015) [CrossRef] [Google Scholar]
- M. Celebrano, A. Locatelli, L. Ghirardini, G. Pellegrini, P. Biagioni, A. Zilli, X. Wu, S. Grossmann, L. Carletti, C. De Angelis, L. Duò, B. Hecht, M. Finazzi, Evidence of cascaded third-harmonic generation in noncentrosymmetric gold nanoantennas, Nano Lett. 19, 7013 (2019). [CrossRef] [Google Scholar]
- F. De Luca, M. Ortolani, C. Ciracì, Free electron cascaded third-harmonic generation, 15th International Congress on Artificial Materials for Novel Wave Phenomena - Metamaterials (2021) [Google Scholar]
- R.W. Boyd, Nonlinear Optics (Academic, San Diego, 2006) [Google Scholar]
- S.M. Sze, Physics of Semiconductor Devices (John Wiley and Sons, Inc, New York, 1981) [Google Scholar]
- J.L. Humphrey, D. Kuciauskas, Optical susceptibilities of supported indium tin oxide thin films, J. Appl. Phys. 100, 113123 (2006) [CrossRef] [Google Scholar]
- J.R. Maack, N.A. Mortensen, M. Wubs, Size-dependent nonlocal effects in plasmonic semiconductor particles, Europhys. Lett. 119, 17003 (2021) [Google Scholar]
- S.S. Jha, N. Bloembergen, Nonlinear optical susceptibilities in group-IV and III-V semiconductors, Phys. Rev. 171, 891 (1968) [CrossRef] [Google Scholar]
Issue |
EPJ Appl. Metamat.
Volume 9, 2022
Metamaterials for Novel Wave Phenomena in Microwaves, Optics, and Mechanics
|
|
---|---|---|
Article Number | 13 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/epjam/2022011 | |
Published online | 22 June 2022 |