Metamaterials for Novel Wave Phenomena in Microwaves, Optics, and Mechanics
Open Access
Issue
EPJ Appl. Metamat.
Volume 9, 2022
Metamaterials for Novel Wave Phenomena in Microwaves, Optics, and Mechanics
Article Number 13
Number of page(s) 7
DOI https://doi.org/10.1051/epjam/2022011
Published online 22 June 2022
  • Q. Shen, W. Jin, G. Yang, A.W. Rodriguez, M.H. Mikkelsen, Active control of multiple, simultaneous nonlinear optical processes in plasmonic nanogap cavities, ACS Photonics 7, 901 (2020) [Google Scholar]
  • R. Sarma, D. de Ceglia, N. Nookala, M.A. Vincenti, S. Campione, O. Wolf, M. Scalora, M.B. Sinclair, M.A. Belkin, I. Brener, Broadband and efficient second-harmonic generation from a hybrid dielectric metasurface/semiconductor quantum-well structure, ACS Photonics 6, 1458 (2019) [CrossRef] [Google Scholar]
  • Y. Zeng, H. Qian, M.J. Rozin, Z. Liu, A.R. Tao, Enhanced second harmonic generation in double-resonance colloidal metasurfaces, Adv. Funct. Mater. 28, 1803019 (2018) [CrossRef] [Google Scholar]
  • A.R. Echarri, J.D. Cox, R. Yu, F.J.G. de Abajo, Enhancement of nonlinear optical phenomena by localized resonances, ACS Photonics 5, 1521 (2018) [CrossRef] [Google Scholar]
  • Q. Shen, T.B. Hoang, G. Yang, V.D. Wheeler, M.H. Mikkelsen, Probing the origin of highly-efficient thirdharmonic generation in plasmonic nanogaps, Opt. Express 26, 20718 (2018) [CrossRef] [Google Scholar]
  • S. Guddala, S.A. Ramakrishna, Optical limiting by nonlinear tuning of resonance in metamaterial absorbers, Opt. Lett. 41, 5150 (2016) [CrossRef] [Google Scholar]
  • T. Shibanuma, G. Grinblat, P. Albella, S.A. Maier, Efficient third harmonic generation from metal – dielectric hybrid nanoantennas, Nano Lett. 17, 2647 (2017) [CrossRef] [Google Scholar]
  • J. Lee, M. Tymchenko, C. Argyropoulos, P.-Y. Chen, F. Lu, F. Demmerle, G. Boehm, M.-C. Amann, A. Alù, M.A. Belkin, Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions, Nature (London) 511, 65 (2014) [CrossRef] [Google Scholar]
  • F. Wang, A.B.F. Martinson, H. Harutyunyan, Efficient nonlinear metasurface based on nonplanar plasmonic nanocavities, ACS Photonics 4, 1188 (2017) [CrossRef] [Google Scholar]
  • A. Noor, A.R. Damodaran, I.-H. Lee, S.A. Maier, S.-H. Oh, C. Ciracì, Mode-matching enhancement of second-harmonic generation with plasmonic nanopatch antennas, ACS Photonics 7, 3333 (2020) [CrossRef] [Google Scholar]
  • M. Hentschel, B. Metzger, B. Knabe, K. Buse, H. Giessen, Linear and nonlinear optical properties of hybrid metallic–dielectric plasmonic nanoantennas, Beilstein J. Nanotechnol. 7, 111 (2016) [CrossRef] [Google Scholar]
  • E. Barakat, M.-P. Bernal, F.I. Baida, Theoretical analysis of enhanced nonlinear conversion from metallo-dielectric nanostructures, Opt. Express 20, 16258 (2012) [CrossRef] [Google Scholar]
  • J. Deng, Y. Tang, S. Chen, K. Li, A.V. Zayats, G. Li, Giant enhancement of second-order nonlinearity of epsilon-nearzero medium by a plasmonic metasurface, Nano Lett. 20, 5421 (2020) [CrossRef] [Google Scholar]
  • M.P. Nielsen, X. Shi, P. Dichtl, S.A. Maier, R.F. Oulton, Giant nonlinear response at a plasmonic nanofocus drives efficient four-wave mixing, Science 358, 1179 (2017) [CrossRef] [Google Scholar]
  • A.V. Krasavin, P. Ginzburg, A.V. Zayats, Free-electron optical nonlinearities in plasmonic nanostructures: A review of the hydrodynamic description, Laser Photon. Rev. 12, 1700082 (2018) [CrossRef] [Google Scholar]
  • A. Chizmeshya, E. Zaremba, Second-harmonic generation at metal surfaces using an extended Thomas Fermi von Weizsacker theory, Phys. Rev. B 37, 2805 (1988) [CrossRef] [Google Scholar]
  • N. Crouseilles, P.-A. Hervieux, G. Manfredi, Quantum hydrodynamic model for the nonlinear electron dynamics in thin metal films, Phys. Rev. B 78, 155412 (2008) [CrossRef] [Google Scholar]
  • M. Scalora, M.A. Vincenti, D. de Ceglia, V. Roppo, M. Centini, N. Akozbek, M.J. Bloemer, Second- and third-harmonic generation in metal-based structures, Phys. Rev. A 82, 043828 (2010) [CrossRef] [Google Scholar]
  • Y. Pavlyukh, J. Berakdar, W. Hubner, Semi – classical approximation for second-harmonic generation in nanoparticles, New J. Phys. 14, 093044 (2012) [CrossRef] [Google Scholar]
  • C. Ciracì, E. Poutrina, M. Scalora, D.R. Smith, Origin of second-harmonic generation enhancement in optical split-ring resonators, Phys. Rev. B 85, 201403 (2012) [CrossRef] [Google Scholar]
  • A. Boltasseva, H.A. Atwater, Low-loss plasmonic metamaterials, Science 331, 290 (2011) [CrossRef] [Google Scholar]
  • G.V. Naik, V.M. Shalaev, A. Boltasseva, Alternative plasmonic materials: beyond gold and silver, Adv. Mater. 25, 3264 (2013) [CrossRef] [Google Scholar]
  • T. Taliercio, P. Biagioni, Semiconductor infrared plasmonics, Nanophotonics 8, 949 (2019) [CrossRef] [Google Scholar]
  • Y. Su, W. Wang, X. Hu, H. Hu, X. Huang, Y. Wang, J. Si, X. Xie, B. Han, H. Feng, Q. Hao, G. Zhu, T. Duan, W. Zhao, 10 Gbps DPSK transmission over free-space link in the midinfrared, Opt. Express 26, 34515 (2018) [CrossRef] [Google Scholar]
  • F. De Luca, M. Ortolani, C. Ciracì, Free electron nonlinearities in heavily doped semiconductors plasmonics, Phys. Rev. B 103, 115305 (2021) [CrossRef] [Google Scholar]
  • W. Yan, Hydrodynamic theory for quantum plasmonics: linear response dynamics of the inhomogeneous electron gas, Phys. Rev. B 91, 115416 (2015) [CrossRef] [Google Scholar]
  • D. de Ceglia, M. Scalora, M.A. Vincenti, S. Campione, K. Kelley, E.L. Runnerstrom, J.-P. Maria, G.A. Keeler, and T.S. Luk, Viscoelastic optical nonlocality of low-loss epsilon-nearzero nanofilms, Sci. Rep. 8, 9335 (2018) [CrossRef] [Google Scholar]
  • S. Raza, S.I. Bozhevolnyi, M. Wubs, N.A. Mortensen, Nonlocal optical response in metallic nanostructures, J. Phys.: Condens. Matter 27, 183204 (2015) [CrossRef] [Google Scholar]
  • C. Ciracì, F. Della Sala, Quantum hydrodynamic theory for plasmonics: impact of the electron density tail, Phys. Rev. B 93, 205405 (2016) [CrossRef] [Google Scholar]
  • COMSOL MULTIPHYSICS, www.comsol.com. [Google Scholar]
  • F. De Luca, C. Ciracì, Difference-frequency generation in plasmonic nanostructures: A parameter-free hydrodynamic description, J. Opt. Soc. Am. B 36, 1979 (2019) [CrossRef] [Google Scholar]
  • M. Celebrano, X. Wu, M. Baselli, S.G. Mann, P. Biagioni, A. Locatelli, C. de Angelis, G. Cerullo, R. Osellame, B. Hecht,L. Duò, F. Ciccacci, M. Finazzi, Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation, Nat. Nanotechnol. 10, 412 (2015) [CrossRef] [Google Scholar]
  • M. Celebrano, A. Locatelli, L. Ghirardini, G. Pellegrini, P. Biagioni, A. Zilli, X. Wu, S. Grossmann, L. Carletti, C. De Angelis, L. Duò, B. Hecht, M. Finazzi, Evidence of cascaded third-harmonic generation in noncentrosymmetric gold nanoantennas, Nano Lett. 19, 7013 (2019). [CrossRef] [Google Scholar]
  • F. De Luca, M. Ortolani, C. Ciracì, Free electron cascaded third-harmonic generation, 15th International Congress on Artificial Materials for Novel Wave Phenomena - Metamaterials (2021) [Google Scholar]
  • R.W. Boyd, Nonlinear Optics (Academic, San Diego, 2006) [Google Scholar]
  • S.M. Sze, Physics of Semiconductor Devices (John Wiley and Sons, Inc, New York, 1981) [Google Scholar]
  • J.L. Humphrey, D. Kuciauskas, Optical susceptibilities of supported indium tin oxide thin films, J. Appl. Phys. 100, 113123 (2006) [CrossRef] [Google Scholar]
  • J.R. Maack, N.A. Mortensen, M. Wubs, Size-dependent nonlocal effects in plasmonic semiconductor particles, Europhys. Lett. 119, 17003 (2021) [Google Scholar]
  • S.S. Jha, N. Bloembergen, Nonlinear optical susceptibilities in group-IV and III-V semiconductors, Phys. Rev. 171, 891 (1968) [CrossRef] [Google Scholar]