Open Access
Issue
EPJ Nuclear Sci. Technol.
Volume 4, 2018
Article Number 6
Number of page(s) 15
DOI https://doi.org/10.1051/epjn/2018005
Published online 15 May 2018
  • J.J. Herrero, A. Vasiliev, M. Pecchia, H. Ferroukhi, S. Caruso, Review calculations for the OECD/NEA Burn-up Credit Criticality Safety Benchmark, Ann. Nucl. Energy 87, 48 (2016) [CrossRef] [Google Scholar]
  • D.L. Watson, J.S. Busch, H.L. Julien, J.S. Ritchie, Optimization of mine layout for nuclear fuel assembly storage, Nucl. Eng. Des. 67, 349 (1982) [CrossRef] [Google Scholar]
  • S. Caruso, Estimation of the radionuclide inventory in LWR spent fuel assembly structural materials for long-term safety analysis, EPJ Nuclear Sci. Technol. 2, 4 (2016) [CrossRef] [EDP Sciences] [Google Scholar]
  • A.J. Koning, D. Rochman, Towards sustainable nuclear energy: putting nuclear physics to work, Ann. Nucl. Energy 35, 2024 (2008) [CrossRef] [Google Scholar]
  • B. Zaffora, M. Magistris, G. Saporta, F. La Torre, Statistical sampling applied to the radiological characterization of historical waste, EPJ Nuclear Sci. Technol. 2, 34 (2016) [CrossRef] [EDP Sciences] [Google Scholar]
  • O. Leray, H. Ferroukhi, M. Hursin, A. Vasiliev, D. Rochman, Methodology for core analyses with nuclear data uncertainty quantification and application to Swiss PWR operated cycles, Ann. Nucl. Energy 110, 547 (2017) [CrossRef] [Google Scholar]
  • D. Rochman, O. Leray, M. Hursin, H. Ferroukhi, A. Vasiliev, A. Aures, F. Bostelmann, W. Zwermann, O. Cabellos, C.J. Diez, J. Dyrda, N. Garcia-Herranz, E. Castro, S. van der Marck, H. Sjostrand, A. Hernandez, M. Fleming, J.-Ch. Sublet, L. Fiorito, Nuclear data uncertainties for typical LWR fuel assemblies and a simple reactor core, Nucl. Data Sheets 139, 1 (2017) [CrossRef] [Google Scholar]
  • O. Cabellos, E. Castro, C. Ahnert, C. Holgado, Propagation of nuclear data uncertainties for PWR core analysis, Nucl. Eng. Technol. 46, 299 (2014) [CrossRef] [Google Scholar]
  • M.B. Chadwick, M. Herman, P. Oblozinsky, M.E. Dunn, Y. Danon, A.C. Kahler, D.L. Smith, B. Pritychenko, G. Arbanas, R. Arcilla, R. Brewer, D.A. Brown, R. Capote, A.D. Carlson, Y.S. Cho, H. Derrien, K. Guber, G.M. Hale, S. Hoblit, S. Holloway, T.D. Johnson, T. Kawano, B.C. Kiedrowski, H. Kim, S. Kunieda, N.M. Larson, L. Leal, J.P. Lestone, R.C. Little, E.A. McCutchan, R.E. MacFarlane, M. MacInnes, C.M. Mattoon, R.D. McKnight, S.F. Mughabghab, G.P.A. Nobre, G. Palmiotti, A. Palumbo, M.T. Pigni, V.G. Pronyaev, R.O. Sayer, A.A. Sonzogni, N.C. Summers, P. Talou, I.J. Thompson, A. Trkov, R.L. Vogt, S.C. van der Marck, A. Wallner, M.C. White, D. Wiarda, P.G. Young, ENDF/B-VII.1 nuclear data for science, technology: cross sections, covariances, fission product yields and decay data, Nucl. Data Sheets 112, 2887 (2011) [CrossRef] [Google Scholar]
  • D. Rochman, O. Leray, A. Vasiliev, H. Ferroukhi, A.J. Koning, M. Fleming, J.C. Sublet, A Bayesian Monte Carlo method for fission yield covariance information, Ann. Nucl. Energy 95, 125 (2016) [CrossRef] [Google Scholar]
  • O. Leray, D. Rochman, P. Grimm, H. Ferroukhi, A. Vasiliev, M. Hursin, G. Perret, A. Pautz, Nuclear data uncertainty propagation on spent fuel nuclide compositions, Ann. Nucl. Energy 94, 603 (2016) [CrossRef] [Google Scholar]
  • R.E. MacFarlane, A.C. Kahler, Methods for Processing ENDF/B-VII with NJOY, Nucl. Data Sheets 111, 2739 (2010) [CrossRef] [Google Scholar]
  • O. Leray, P. Grimm, M. Hursin, H. Ferroukhi, A. Pautz, Uncertainty quantification of spent fuel nuclide compositions due to cross-sections, decay constants and fission yields, in Proceedings of the PHYSOR-2014 Conference (The Westin Miyako, Kyoto, Japan, 2014) [Google Scholar]
  • J. Rhodes, K. Smith, D. Lee, CASMO-5 development and applications, in Proceedings of the PHYSOR-2006 conference, ANS Topical Meeting on Reactor Physics (Vancouver, BC, Canada, 2006), p. B144 [Google Scholar]
  • W. Wieselquist, A. Vasiliev, H. Ferroukhi, Nuclear data uncertainty propagation in a lattice physics code using stochastic sampling, in Proceedings of the PHYSOR-2012 conference, Advances in Reactor Physics Linking Research, Industry, and Education, on CD-ROM, (American Nuclear Society, Knoxville, Tennessee, USA, 2012), pp. 15–20 [Google Scholar]
  • G. Ilas, H. Lijenfeldt, Decay heat uncertainty for BWR used fuel due to modeling and nuclear data uncertainties, Nucl. Eng. Des. 319, 176 (2017) [CrossRef] [Google Scholar]
  • D. Rochman, A.J. Koning, D.F. Da Cruz, Propagation of U and Pu nuclear data uncertainties for a typical PWR fuel element, Nucl. Technol. 179, 323 (2012) [CrossRef] [Google Scholar]
  • H. Ferroukhi, O. Leray, M. Hursin, A. Vasiliev, G. Perret, A. Pautz, Study of nuclear decay data contribution to uncertainties in heat load estimations for spent fuel pools, Nucl. Data Sheets 118, 498 (2014) [CrossRef] [Google Scholar]
  • T. Bahadir, S.O. Lindahl, Studsvik's next generation nodal code SIMULATE-5, in Proceedings of the ANFM-2009 conference, Advances in Nuclear Fuel Management IV (Hilton Head Island, South Carolina, USA, 2009) [Google Scholar]
  • S. Borresen, Spent nuclear fuel analyses based on in-core fuel management calculations, in Proceedings of the PHYSOR-2014 conference, (The Westin Miyako, Kyoto, Japan, 2014) [Google Scholar]
  • R.A. Fisher, The moments of the distribution for normal samples of measures of departure from normality, in Proceedings of the Royal Society (London, 1931), Vol. 130, p. 16 [CrossRef] [Google Scholar]
  • H. Hotelling, New light on the correlation coefficient and its transforms. J. R. Stat. Soc. B 15, 193 ( 1953) [Google Scholar]
  • D. Rochman, Scoping Analyses towards Global Methodology for CASMO Uncertainty and Bias Quantification − Case Study for KKG UR3 Sample, PSI Technical Report TM-41-15-09 V.1, 2016 [Google Scholar]
  • D. Rochman, E. Bauge, A. Vasiliev, H. Ferroukhi, Correlation nu-sigma-chi in the fast neutron range via integral information, EPJ. Nuclear Sci. Technol. 3, 14 (2017) [CrossRef] [EDP Sciences] [Google Scholar]
  • Decay Heat Power in Light Water Reactors, ANSI/ANS-5.1-2014 (American Nuclear Society, 2014) [Google Scholar]
  • W. Zwermann, A. Aures, L. Gallner, V. Hannstein, B. Krykacz-Haussmann, K. Velkov, J.S. Martinez, Nuclear data uncertainty and sensitivity analysis with XSUSA for fuel assembly depletion calculations, Nucl. Eng. Technol. 46, 343 (2014) [CrossRef] [Google Scholar]
  • M.L. Williams, G. Ilas, W.J. Marshall, B.T. Rearden, Applications of nuclear data covariances to criticality safety and spent fuel characterization, Nucl. Data Sheets 118, 341 (2014) [CrossRef] [Google Scholar]
  • J. Hu, I.C. Gauld, Impact of nuclear data uncertainties on calculated spent fuel nuclide inventories and advances NDA instrument response, ESARDA Bull. 51 ( 2014) [Google Scholar]
  • D. Rochman, C.M. Sciolla, Nuclear data uncertainty propagation for a typical PWR fuel assembly with burnup, Nucl. Eng. Technol. 46, 353 (2014) [CrossRef] [Google Scholar]
  • D.F. da Cruz, D. Rochman, A.J. Koning, Quantification of Uncertainties due to U, Pu and Fission Products Nuclear Data Uncertainties for a PWR Fuel Assembly, Nucl. Data Sheets 118, 531 (2014) [CrossRef] [Google Scholar]
  • M.T. Pigni, M.W. Francis, I.C. Gault, Investigation of inconsistent ENDF/B-VII.1 independent and cumulative fission product yields with proposed revisions, Nucl. Data Sheets 123, 231 (2015) [CrossRef] [Google Scholar]
  • Y. Kawamoto, G. Chiba, Feasibility study of decay heat uncertainty reduction using nuclear data adjustment method with experimental data, J. Nucl. Sci. Technol. 54, 213 (2017) [CrossRef] [Google Scholar]