Highlight
Open Access
Issue
EPJ Nuclear Sci. Technol.
Volume 5, 2019
Article Number 7
Number of page(s) 9
DOI https://doi.org/10.1051/epjn/2019003
Published online 15 May 2019
  • G.S. Was, Challenges to the use of ion irradiation for emulating reactor irradiation, J. Mater. Res. 30, 1158 (2015) [CrossRef] [Google Scholar]
  • S.J. Zinkle, L.L. Snead, Opportunities and limitations for ion beams in radiation effects studies: bridging critical gaps between charged particle and neutron irradiations, Scripta Mater. 143, 154 (2018) [CrossRef] [Google Scholar]
  • J.F. Ziegler, J.P. Biersack, M.D. Ziegler, SRIM − The stopping and range of ions in matter (Ion Implantation Press, 2008) [Google Scholar]
  • M. Robinson, The energy dependence of neutron radiation damage in solids, Nucl. Fusion React. 1, 364 (1970) [Google Scholar]
  • M.T. Robinson, I.M. Torrens, Computer simulation of atomic displacement cascades in solids in the binary-collision approximation, Phys. Rev. B 9, 5008 (1974) [CrossRef] [Google Scholar]
  • R. Averback, R. Benedek, K.L. Merkle, Ion-irradiation studies of the damage function of copper and silver, Phys. Rev. B 18, 4156 (1978) [CrossRef] [Google Scholar]
  • M.W. Guinan, J.H. Kinney, Molecular dynamic calculations of energetic displacement cascades, J. Nucl. Mater. 104, 1319 (1981) [CrossRef] [Google Scholar]
  • L.E. Rehn, P.R. Okamoto, Production of freely-migrating defects during irradiation, Mater. Sci. Forum 15–18, 985 (1987) [CrossRef] [Google Scholar]
  • L. Luneville, D. Simeone, D. Gosset, A new tool to compare neutron and ion irradiation in materials, Nucl. Instrum. Methods Phys. Res. Sect. B 250, 71 (2006) [CrossRef] [Google Scholar]
  • J.F. Ziegler, SRIM, www.srim.org [Google Scholar]
  • C. Borschel, C. Ronning, Ion beam irradiation of nanostructures − A 3D Monte Carlo simulation code, Nucl. Instrum. Methods Phys. Res. Sect. B 269, 2133 (2011) [CrossRef] [Google Scholar]
  • F. Schiettekatte, Fast Monte Carlo for ion beam analysis simulations, Nucl. Instrum. Methods Phys. Res. Sect. B 266, 1880 (2008) [CrossRef] [Google Scholar]
  • D. Schwen, MyTrim, https://github.com/idaholab/mytrim [Google Scholar]
  • W. Eckstein, et al. SDTrimSP version 5.00, MaxPlanck- Institut für Plasmaphysik, Report 12/08 [Google Scholar]
  • Y.G. Li, et al., IM3D: a parallel Monte Carlo code for efficient simulations of primary radiation displacements and damage in 3D geometry, Sci. Rep. 5, 18130 (2015) [CrossRef] [Google Scholar]
  • C.J. Ortiz, A combined BCA-MD method with adaptive volume to simulate high-energy atomic-collision cascades in solids under irradiation, Comput. Mater. Sci. 154, 325 (2018) [CrossRef] [Google Scholar]
  • M. Norgett, M.T. Robinson, I. Torrens, A proposed method of calculating displacement dose rates, Nucl. Eng. Design 33, 50 (1975) [CrossRef] [Google Scholar]
  • M. Robinson, The energy dependence of neutron radiation damage in solids, Nuclear Fusion Reactor Conference (Culham Laboratory, 1969) [Google Scholar]
  • J.B. Gibson, et al., Dynam. Radiat. Damage Phys. Rev. 120, 1229 (1960) [Google Scholar]
  • J. Lindhard, M. Scharff, H.E. Schiott, Kgl. Dan. Vidensk. Selsk. Mat. −fys. Medd 33, 14 (1963) [Google Scholar]
  • J.F. Ziegler, J.P. Biersack, M.D. Ziegler, in SRIM − The stopping and range of ions in matter (Ion Implantation Press, 2008), pp. 7–16 [Google Scholar]
  • C. Borschel, et al., Iradina, https://sourceforge.net/projects/iradina/ [Google Scholar]
  • C. Van Wambeke, J.P. Crocombette, Iradina_CEA, https://sourceforge.net/projects/iradina/files/Iradina_CEA/ [Google Scholar]
  • E. Brun, et al., Tripoli-4®, CEA, EDF and AREVA reference Monte Carlo code, Ann. Nucl. Energy 82, 151 (2015) [CrossRef] [Google Scholar]
  • R.E. Macfarlane, D.W. Muir, F.M. Mann, Radiation damage calculations with njoy, J. Nucl. Mater. 123, 1041 (1984) [CrossRef] [Google Scholar]
  • R.E. Stoller, The role of cascade energy and temperature in primary defect formation in iron, J. Nucl. Mater. 276, 22 (2000) [CrossRef] [Google Scholar]
  • R.E. Stoller, et al., On the use of SRIM for computing radiation damage exposure, Nucl. Instrum. Methods Phys. Res. Sect. B 310, 75 (2013) [CrossRef] [Google Scholar]
  • K. Nordlund, et al., Improving atomic displacement and replacement calculations with physically realistic damage models, Nat. Commun. 9, 8 (2018) [CrossRef] [Google Scholar]
  • C.S. Becquart, A. Souidi, M. Hou, Relation between the interaction potential, replacement collision sequences, and collision cascade expansion in iron, Phys. Rev. B 66, 134104 (2002) [CrossRef] [Google Scholar]
  • E. Zarkadoula, et al., Electronic effects in high-energy radiation damage in iron, J. Phys.: Condens. Matter 26, 085401 (2014) [CrossRef] [Google Scholar]
  • W. Setyawan, et al., Displacement cascades and defects annealing in tungsten, Part I Defect Database Mol. Dynam. Simulat. 462, 329 (2015) [Google Scholar]
  • J.P. Crocombette, et al., Molecular dynamics simulations of high energy cascade in ordered alloys: defect production and subcascade division, J. Nucl. Mater. 474, 134 (2016) [CrossRef] [Google Scholar]