Open Access
Issue
EPJ Nuclear Sci. Technol.
Volume 5, 2019
Article Number 11
Number of page(s) 29
DOI https://doi.org/10.1051/epjn/2019030
Published online 08 November 2019
  • G.P. Mezzi, Nucl. Eng. Des. 73, 83 (1983) [CrossRef] [Google Scholar]
  • M. Oguma, Nucl. Eng. Des. 76, 35 (1983) [CrossRef] [Google Scholar]
  • L.A. Walton, D.L. Husser, in Water Reactor Fuel Element Performance Computer Modelling, edited by J.H. Gittus (Applied Science Publishers, London, UK, 1983), Chap. 7, pp. 115–135 [Google Scholar]
  • O. Coindreau, F. Fichot, J. Fleurot, Nucl. Eng. Des. 255, 68 (2013) [CrossRef] [Google Scholar]
  • Nuclear fuel behaviour under reactivity-initiated accident (RIA) conditions. Report 6847, OECD Nuclear Energy Agency, Paris, France, 2010 [Google Scholar]
  • D. Lespiaux, J. Noirot, P. Menut, in 1997 International Topical Meeting on Light Water Reactor Fuel Performance (American Nuclear Society, Portland, OR, 1997), pp. 650–658 [Google Scholar]
  • T. Fuketa, T. Nakmura, H. Sasajima, F. Nagase, H. Uetsuka, K. Kikuchi, T. Abe, in 2000 International Topical Meeting on Light Water Reactor Fuel Performance (American Nuclear Society, Park City, UT, USA, 2000), pp. 359–374 [Google Scholar]
  • M. Oguma, J. Nucl. Mater. 127, 67 (1985) [CrossRef] [Google Scholar]
  • O.D. Slagle, C.A. Hinman, E.T. Weber, Experiments on melting and gas release behavior of irradiated fuel. Tech. Rep. HEDL-TME 74-17, Hanford Engineering Development Laboratory, Richland, WA, USA, 1974 [Google Scholar]
  • L.W. Deitrich, J.F. Jackson, in IAEA-IWGFR specialist’s meeting on role of fission products in whole core accidents, vol. IWGFR–19 (International Atomic Energy Agency, AERE, Harwell, UK, 1977), Vol. IWGFR–19, pp. 66–87 [Google Scholar]
  • R.J. DiMelfi, J.M. Kramer, Nucl. Technol. 62, 51 (1983) [CrossRef] [Google Scholar]
  • S.A. Wright, E.A. Fischer, Eur. Appl. Res. Rep. Nucl. Sci. Technol. 5, 1393 (1984) [Google Scholar]
  • J.R. Matthews, A.H. Harker, D.S. Whitmell, in International conference on radiation materials science (Kharkov Fiziko-Tekhnicheskij Institut, Alushta, Soviet Union, 1990), Vol. 1, pp. 184–214 [Google Scholar]
  • E.E. Gruber, W.R. Bohl, M.G. Stevenson, in Reactor development program progress report (Argonne National Laboratory, Argonne, IL, USA, 1973), ANL-RDP-15, Chap. 9.1 [Google Scholar]
  • M.W. Finnis, (report unavailable). Harwell Research Report AERE-R 8537, Atomic Energy Research Establishment, Harwell, Oxon, UK, 1976 [Google Scholar]
  • R.J. DiMelfi, L.W. Deitrich, Nucl. Technol. 43, 328 (1979) [CrossRef] [Google Scholar]
  • D.H. Worledge, Fuel fragmentation by fission gases during rapid heating. Tech. Rep. SAND80-0328 (NUREG/CR-1611), Sandia National Laboratories, Albuquerque, NM, USA (1980) [Google Scholar]
  • S.M. Gehl, Release of fission gas during transient heating of LWR fuel. Tech. Rep. ANL-80-108, Argonne National Laboratory, Lemont, IL, USA (1982). Also as U.S. NRC report NUREG/CR-2777 [Google Scholar]
  • F. Lemoine, J. Nucl. Mater. 248, 238 (1997) [CrossRef] [Google Scholar]
  • T. Fuketa, H. Sasajima, Y. Mori, K. Ishijima, J. Nucl. Mater. 248, 249 (1997) [CrossRef] [Google Scholar]
  • V.V. Likhanskii, L.V. Matveev, Atom. Energy 87, 490 (1999) [CrossRef] [Google Scholar]
  • F. Lemoine, J. Papin, J.M. Frizonnet, B. Cazalis, H. Rigat, in Fission Gas Behaviour in Water Reactor Fuels – Seminar Proceedings (OECD Nuclear Energy Agency, Cadarache, France, 2000), pp. 175–187 [Google Scholar]
  • K. Une, S. Kashibe, A. Takagi, J. Nucl. Sci. Technol. 43, 1161 (2006) [CrossRef] [Google Scholar]
  • J.P. Hiernaut, T. Wiss, J.Y. Colle, H. Thiele, C.T. Walker, W. Goll, R.J.M. Konings, J. Nucl. Mater. 377, 313 (2008) [CrossRef] [Google Scholar]
  • A. Puranen, M. Granfors, P. Askeljung, D. Jädernäs, M. Flanagan, in Proceedingsof 2013 LWR Fuel Performance/TopFuel/WRFPM (American Nuclear Society, Charlotte, NC, USA, 2013), pp. 669–674 [Google Scholar]
  • B.C. Oberländer, W. Wiesenack, Overview of Halden reactor LOCA experiments (with emphasis on fuel fragmentation) and plans. Report IFE/KR/E-2014/001, Institute for Energy Technology, Kjeller, Norway, 2014 [Google Scholar]
  • NEA Studsvik cladding integrity project (SCIP-III). https://www.oecd-nea.org/jointproj/scip-3.html (2019) [Google Scholar]
  • S. Yagnik, J.A. Turnbull, J. Noirot, C.T. Walker, L. Hallstadius, N. Waeckel, P. Blanpain, in 2014 Water Reactor Fuel Performance Meeting (WRFPM-2014) (Atomic Energy Society of Japan, Sendai, Japan, 2014) [Google Scholar]
  • J.A. Turnbull, S.K. Yagnik, M. Hirai, D.M. Staicu, C.T. Walker, Nucl. Sci. Eng. 179, 477 (2015) [CrossRef] [Google Scholar]
  • A. Bianco, Experimental investigation on the causes for pellet fragmentation under LOCA conditions. Ph.D. thesis, Technischen Universität München, Germany, 2015 [Google Scholar]
  • A. Bianco, C. Vitanza, M. Seidl, A. Wensauer, W. Faber, R. Marcian-Juan, J. Nucl. Mater. 465, 260 (2015) [CrossRef] [Google Scholar]
  • Nuclear fuel behaviour in loss-of-coolant accident (LOCA) conditions. Report 6846, OECD Nuclear Energy Agency, Paris, France, 2009 [Google Scholar]
  • Report fuel fragmentation, relocation and dispersal. Report NEA/CSNI/R(2016)16, OECD Nuclear Energy Agency, Paris, France, 2016 [Google Scholar]
  • K. Kulacsy, J. Nucl. Mater. 466, 409 (2015) [CrossRef] [Google Scholar]
  • M. Suzuki, Y. Udagawa, T. Sugiyama, F. Nagase, in Proceedings of TopFuel 2012 (European Nuclear Society, Manchester, UK, 2012), pp. 554–559 [Google Scholar]
  • A. Moal, V. Georgenthum, O. Marchand, Nucl. Eng. Des. 280, 150 (2014) [CrossRef] [Google Scholar]
  • G. Khvostov, Nucl. Eng. Des. 328, 36 (2018) [CrossRef] [Google Scholar]
  • I. Guenot-Delahaie, J. Sercombe, T. Helfer, P. Goldbronn, E. Federici, T.L. Jolu, A. Parrot, C. Delafoy, C. Bernaudat, Nucl. Eng. Technol. 50, 268 (2018) [CrossRef] [Google Scholar]
  • M. Tonks, D. Andersson, R. Devanathan, R. Dubourg, A. El-Azab, M. Freyss, F. Iglesias, K. Kulacsy, G. Pastore, S.R. Phillpot, M. Welland, J. Nucl. Mater. 504, 300 (2018) [CrossRef] [Google Scholar]
  • K.J. Geelhood, W.G. Luscher, P.A. Raynaud, I.E. Porter, FRAPCON-4.0: A computer code for the calculation of steady-state, thermal-mechanical behavior of oxide fuel rods for high burnup. Report PNNL-19418, Vol. 1, Rev. 2, Pacific Northwest National Laboratory, Richland, WA, USA, 2015 [Google Scholar]
  • K.J. Geelhood, W.G. Luscher, J.M. Cuta, FRAPTRAN-1.5: A computer code for the transient analysis of oxide fuel rods. Report PNNL-19400, Vol. 1, Rev. 1, Pacific Northwest National Laboratory, Richland, WA, USA, 2014 [Google Scholar]
  • L.O. Jernkvist, A. Massih, in Fuel Modelling in Accident Conditions (FUMAC): Country Reports from Participants (International Atomic Energy Agency, Vienna, Austria, 2019), IAEA-TECDOC, Vol. 2 [Google Scholar]
  • E.N. Hodkin, J. Nucl. Mater. 88, 7 (1980) [CrossRef] [Google Scholar]
  • R.O.A. Hall, M.J. Mortimer, D.A. Mortimer, J. Nucl. Mater. 148, 237 (1987) [CrossRef] [Google Scholar]
  • M.V. Speight, Nucl. Sci. Eng. 37, 180 (1969) [CrossRef] [Google Scholar]
  • K. Forsberg, A.R. Massih, J. Nucl. Mater. 135, 140 (1985) [CrossRef] [Google Scholar]
  • P. Hermansson, A.R. Massih, J. Nucl. Mater. 304, 204 (2002) [CrossRef] [Google Scholar]
  • J. Rest, M.W.D. Cooper, J. Spino, J.A. Turnbull, P. van Uffelen, C.T. Walker, J. Nucl. Mater. 513, 310 (2019) [CrossRef] [Google Scholar]
  • J.A. Turnbull, C.A. Friskney, J.R. Findlay, F.A. Johnson, A.J. Walter, J. Nucl. Mater. 107, 168 (1982) [CrossRef] [Google Scholar]
  • J.A. Turnbull, R.J. White, C. Wise, in Water reactor fuel element computer modelling in steady state, transient and accident conditions (International Atomic Energy Agency, Vienna, Austria, 1988), IAEA-TC-659/3.5, pp. 174–181 [Google Scholar]
  • F.S. Ham, J. Phys. Chem. Solids 6, 335 (1958) [CrossRef] [Google Scholar]
  • R.J. White, M.O. Tucker, J. Nucl. Mater. 118, 1 (1983) [CrossRef] [Google Scholar]
  • H. Matzke, Radiat. Effects 53, 219 (1980) [CrossRef] [Google Scholar]
  • C. Baker, J. Nucl. Mater. 66, 283 (1977) [CrossRef] [Google Scholar]
  • T.S. Noggle, J.O. Stiegler, J. Appl. Phys. 31, 2199 (1960) [CrossRef] [Google Scholar]
  • D.R. Olander, Fundamental Aspects of Nuclear Reactor Fuel Elements (National Technology Information Services, Springfield, VA, USA, 1976) [Google Scholar]
  • B.J. Lewis, J. Nucl. Mater. 148, 28 (1987) [CrossRef] [Google Scholar]
  • I.J. Hastings, J. Nucl. Mater. 54, 138 (1974) [CrossRef] [Google Scholar]
  • C.T. Walker, P. Knappik, M. Mogensen, J. Nucl. Mater. 160, 10 (1988) [CrossRef] [Google Scholar]
  • G.J. Small, in Water Reactor Fuel Element Computer Modelling in Steady State, Transient and Accident Conditions (IAEA, Vienna, Austria, 1989), IWGFPT/32, pp. 209–220 [Google Scholar]
  • S. Kashibe, K. Une, J. Nucl. Sci. Technol. 28, 1090 (1991) [CrossRef] [Google Scholar]
  • R.J. White, J. Nucl. Mater. 325, 61 (2004) [CrossRef] [Google Scholar]
  • R.J. White, R.C. Corcoran, P.J. Barnes, NEA-1705 IFPE/CAGR-UOX-SWELL: Fuel swelling data obtained from the AGR/Halden ramp test program. OECD Nuclear Energy Agency, Paris, France, 2006 [Google Scholar]
  • M.S. Veshchunov, J. Nucl. Mater. 374, 44 (2008) [CrossRef] [Google Scholar]
  • G. Pastore, L. Luzzi, V.D. Marcello, P. van Uffelen, Nucl. Eng. Des. 256, 75 (2013) [CrossRef] [Google Scholar]
  • D. Hull, D.E. Rimmer, Philos. Mag. 4, 673 (1959) [CrossRef] [Google Scholar]
  • R. Raj, M.F. Ashby, Acta Metall. 23, 653 (1975) [CrossRef] [Google Scholar]
  • M.V. Speight, W. Beeré, Metal Sci. 9, 190 (1975) [CrossRef] [Google Scholar]
  • G.I. Reynolds, W.B. Beeré, P.T. Sawbridge, J. Nucl. Mater. 41, 112 (1971) [CrossRef] [Google Scholar]
  • T. Kogai, J. Nucl. Mater. 244, 131 (1997) [CrossRef] [Google Scholar]
  • E.E. Gruber, J. Nucl. Mater. 110, 223 (1982) [CrossRef] [Google Scholar]
  • M.R. Hayns, M.W. Finnis, Eur. Appl. Res. Rep. Nucl. Sci. Technol. 1, 255 (1979) [Google Scholar]
  • J.R. Matthews, M.H. Wood, J. Nucl. Mater. 91, 241 (1980) [CrossRef] [Google Scholar]
  • T. Kogai, K. Ito, Y. Iwano, J. Nucl. Mater. 158, 64 (1988) [CrossRef] [Google Scholar]
  • P. van Uffelen in 2000 International Topical Meeting on Light Water Reactor Fuel Performance (American Nuclear Society, Park City, UT, USA, 2000), pp. 356–368 [Google Scholar]
  • N.F. Carnahan, K.E. Starling, J. Chem. Phys. 51, 635 (1969) [NASA ADS] [CrossRef] [Google Scholar]
  • P.C. Millett, Comp. Mater. Sci. 53, 31 (2012) [CrossRef] [Google Scholar]
  • D. Sabogal-Suarez, J.D. Alzate-Cardona, E. Restrepo-Parra, J. Nucl. Mater. 475, 81 (2016) [CrossRef] [Google Scholar]
  • P. van Uffelen Contribution to the modelling of fission gas release in light water reactor fuel. Thesis BLG-907, Université de Liège, Belgium, 2002 [Google Scholar]
  • T. Kogai, Y. Iwano, J. Nucl. Sci. Technol. 27, 1017 (1990) [CrossRef] [Google Scholar]
  • L.O. Jernkvist, To appear in Prog. Nucl. Energy [Google Scholar]
  • P. Chakraborty, M.R. Tonks, G. Pastore, J. Nucl. Mater. 452, 95 (2014) [CrossRef] [Google Scholar]
  • T.L. Anderson, Fracture mechanics: Fundamentals and applications, 3rd edn. (CRC Press, Boca Raton, FL, USA, 2005) [CrossRef] [Google Scholar]
  • D. Baron, M. Kinoshita, P. Thevenin, R. Largenton, Nucl. Eng. Technol. 41, 199 (2009) [CrossRef] [Google Scholar]
  • V.V. Rondinella, T. Wiss, Mater. Today 13, 24 (2010) [CrossRef] [Google Scholar]
  • T. Wiss, V.V. Rondinella, R.J.M. Konings, D. Staicu, D. Papaioannou, S. Bremier, P. Pöml, O. Benes, J.Y. Colle, P. van Uffelen, A. Schubert, F. Cappia, M. Marchetti, D. Pizzocri, F. Jatuff, W. Goll, T. Sonoda, A. Sasahara, S. Kitajima, M. Kinoshita, Radiochim. Acta 105, 893 (2017) [CrossRef] [Google Scholar]
  • C.T. Walker, J. Nucl. Mater. 275, 56 (1999) [CrossRef] [Google Scholar]
  • K. Nogita, K. Une, M. Hirai, K. Ito, K. Ito, Y. Shirai, J. Nucl. Mater. 248, 196 (1997) [CrossRef] [Google Scholar]
  • K. Une, M. Hirai, K. Nogita, T. Hosokawa, Y. Suzawa, S. Shimizu, Y. Etoh, J. Nucl. Mater. 278, 54 (2000) [CrossRef] [Google Scholar]
  • Y. Tsukuda, Y. Kosaka, T. Kido, S. Doi, T. Sendo, P. Gonzales, J.M. Alonso, in ENS TopFuel 2003 (European Nuclear Society, Wurzburg, Germany, 2003) [Google Scholar]
  • J. Noirot, Y. Pontillon, S. Yagnik, J.A. Turnbull, J. Nucl. Mater. 462, 77 (2015) [CrossRef] [Google Scholar]
  • M. Mogensen, J.H. Pearce, C.T. Walker, J. Nucl. Mater. 264, 99 (1999) [CrossRef] [Google Scholar]
  • J. Noirot, L. Desgranges, J. Lamontagne, J. Nucl. Mater. 372, 318 (2008) [CrossRef] [Google Scholar]
  • J. Noirot, I. Aubrun, L. Desgranges, K. Hanifi, J. Lamontagne, B. Pasquet, C. Valot, P. Blanpain, H. Cognon, Nucl. Eng. Technol. 41, 155 (2009) [CrossRef] [Google Scholar]
  • J. Noirot, Y. Pontillon, S. Yagnik, J.A. Turnbull, T. Tverberg, J. Nucl. Mater. 446, 163 (2014) [CrossRef] [Google Scholar]
  • J. Spino, D. Papaioannou, J.P. Glatz, J. Nucl. Mater. 328, 67 (2004) [CrossRef] [Google Scholar]
  • J. Spino, A.D. Stalios, H.S. Cruz, D. Baron, J. Nucl. Mater. 354, 66 (2006) [CrossRef] [Google Scholar]
  • R. Restani, M. Horvath, W. Goll, J. Bertsch, D. Gavillet, A. Hermann, M. Martin, C.T. Walker, J. Nucl. Mater. 481, 88 (2016) [CrossRef] [Google Scholar]
  • K. Une, K. Nogita, Y. Suzawa, K. Hayashi, K. Ito, Y. Etoh, in 2000 International Topical Meeting on Light Water Reactor Fuel Performance (American Nuclear Society, Park City, UT, USA, 2000), pp. 775–785 [Google Scholar]
  • K. Une, K. Nogita, T. Shiratori, K. Hayashi, J. Nucl. Mater. 288, 20 (2001) [CrossRef] [Google Scholar]
  • L.O. Jernkvist, A.R. Massih, Models for fuel rod behaviour at high burnup. Report 2005:41, Swedish Nuclear Power Inspectorate (SKI), Stockholm, Sweden, 2004. Available at: www.ssm.se [Google Scholar]
  • J. Rest, J. Nucl. Mater. 326, 175 (2004) [CrossRef] [Google Scholar]
  • L. Holt, A. Schubert, P. van Uffelen, C.T. Walker, E. Fridman, T. Sonoda, J. Nucl. Mater. 452, 166 (2014) [CrossRef] [Google Scholar]
  • M. Kinoshita, T. Sonoda, S. Kitajima, A. Sasahara, T. Kameyama, T. Matsumura, E. Kolstad, V.V. Rondinella, C. Ronchi, J.P. Hiernaut, T. Wiss, F. Kinnart, J. Ejton, D. Papaioannou, H. Matzke, in 2004 International Meeting on LWR Fuel Performance (American Nuclear Society, Orlando, FL, USA, 2004), pp. 207–213 [Google Scholar]
  • G. Khvostov, K. Mikityuk, M.A. Zimmermann, Nucl. Eng. Des. 241, 2983 (2011) [CrossRef] [Google Scholar]
  • C.T. Walker, S. Bremier, S. Portier, R. Hasnaoui, W. Goll, J. Nucl. Mater. 393, 212 (2009) [CrossRef] [Google Scholar]
  • L. Gao, B. Chen, Z. Xiao, S. Jiang, J. Yu, Nucl. Eng. Des. 260, 11 (2013) [CrossRef] [Google Scholar]
  • J. Spino, J. Rest, W. Goll, C.T. Walker, J. Nucl. Mater. 346, 131 (2005) [CrossRef] [Google Scholar]
  • F. Cappia, D. Pizzocri, A. Schubert, P. van Uffelen, G. Paperini, D. Pellottiero, R. Macian-Juan, V.V. Rondinella, J. Nucl. Mater. 480, 138 (2016) [CrossRef] [Google Scholar]
  • H.X. Xiao, C.S. Long, Nucl. Eng. Techn. 48, 1002 (2016) [Google Scholar]
  • K. Lassmann, C.T. Walker, J. van de Laar, F. Lindström, J. Nucl. Mater. 226, 1 (1995) [CrossRef] [Google Scholar]
  • F. Lemoine, D. Baron, P. Blanpain, in Proceedingsof 2010 LWR Fuel Performance/TopFuel/WRFPM (American Nuclear Society, Orlando, FL, USA, 2010), pp. 539–551 [Google Scholar]
  • P. Blair, A. Romano, C. Hellwig, R. Chawla, J. Nucl. Mater. 350, 232 (2006) [CrossRef] [Google Scholar]
  • D. Pizzocri, F. Cappia, L. Luzzi, G. Pastore, V.V. Rondinella, P. van Uffelen, J. Nucl. Mater. 487, 23 (2017) [CrossRef] [Google Scholar]
  • J.O. Barner, M.E. Cunningham, M.D. Freshley, D.D. Lanning, Nucl. Technol. 102, 210 (1993) [CrossRef] [Google Scholar]
  • L.C. Bernard, J.L. Jacoud, P. Vesco, J. Nucl. Mater. 302, 125 (2002) [CrossRef] [Google Scholar]
  • C.B. Lee, D.H. Kim, Y.M. Kim, Y.S. Yang, S.K. Kim, Y.H. Jung, Y.B. Chun, H.S. Seo, in 2004 International Meeting on LWR Fuel Performance (American Nuclear Society, Orlando, FL, USA, 2004), pp. 200–206 [Google Scholar]
  • K. Une, S. Kashibe, K. Hayashi, J. Nucl. Sci. Technol. 39, 668 (2002) [CrossRef] [Google Scholar]
  • A. Romano, M.I. Horvath, R. Restani, J. Nucl. Mater. 361, 62 (2007) [CrossRef] [Google Scholar]
  • P. Blair, Modelling of fission gas behaviour in high burnup nuclear fuel. Thesis no 4084, École polytechnique fédérale de Lausanne, Switzerland, 2008 [Google Scholar]
  • M. Lemes, A. Soba, A. Denis, J. Nucl. Mater. 456, 174 (2015) [CrossRef] [Google Scholar]
  • Y.H. Koo, B.H. Lee, J.S. Cheon, D.S. Sohn, J. Nucl. Mater. 295, 213 (2001) [CrossRef] [Google Scholar]
  • G.W. Greenwood, A.J.E. Foreman, D.E. Rimmer, J. Nucl. Mater. 1, 305 (1959) [CrossRef] [Google Scholar]
  • K. Nogita, K. Une, J. Nucl. Mater. 226, 302 (1995) [CrossRef] [Google Scholar]
  • M.D. Rintoul, S. Torquato, J. Phys. A: Math. Gen. 30, L585 (1997) [CrossRef] [Google Scholar]
  • L.J. Siefken, E.W. Coryell, E.A. Harvego, J.K. Hohorst, SCDAP/RELAP5/MOD 3.3 code manual, MATPRO - A library of materials properties for light water reactor accident analysis. Report NUREG/CR-6150, Vol. 4, Rev. 2, U.S. Nuclear Regulatory Commission, Washington, DC, USA, 2001 [Google Scholar]
  • G.T. Lawrence, J. Nucl. Mater. 71, 195 (1978) [CrossRef] [Google Scholar]
  • G.L. Reynolds, B. Burton, J. Nucl. Mater. 82, 22 (1979) [CrossRef] [Google Scholar]
  • K. Govers, S.E. Lemehov, M. Verwerft, J. Nucl. Mater. 405, 252 (2010) [CrossRef] [Google Scholar]
  • K. Govers, S.E. Lemehov, M. Verwerft, Defect Diffus. Forum 323–325, 215 (2012) [CrossRef] [Google Scholar]
  • M.R. Eslami, R.B. Hetnarski, J. Ignaczak, N. Noda, N. Sumi, Y. Tanigawa, in Theory of elasticity and thermal stresses: explanations, problems and solutions. Solid Mechanics and Its Applications (Springer, Dordrecht, Netherlands, 2013), Vol. 197 [Google Scholar]
  • K.J. Geelhood, W.G. Luscher, FRAPCON-4.0: Integral assessment. Report PNNL-19418, Vol. 2, Rev. 2, Pacific Northwest National Laboratory, Richland, WA, USA, 2015 [Google Scholar]
  • J. Karlsson, P. Beccau, P.M. et al., in Proceedings of TopFuel 2018 (European Nuclear Society, Prague, Czech Republic, 2018) [Google Scholar]
  • M. Veshchunov, J. Stuckert, P. van Uffelen, W. Wiesenack, J. Zhang, in Proceedings of TopFuel 2018 (European Nuclear Society, Prague, Czech Republic, 2018) [Google Scholar]
  • Fuel modelling in accident conditions (FUMAC): Final report of a coordinated research project CRP T12028 (2014−2018). Report IAEA-TECDOC, Vol. 1, International Atomic Energy Agency, Vienna, Austria, 2019 [Google Scholar]
  • International fuel performance experiments (IFPE) database. OECD Nuclear Energy Agency, Paris, France, 2019 [Google Scholar]
  • J. Papin, B. Cazalis, J.M. Frizonnet, J. Desquines, F. Lemoine, V. Georgenthum, F. Lamare, M. Petit, Nucl. Technol. 157, 230 (2007) [CrossRef] [Google Scholar]
  • M. Petit, O. Marchand, F. Barre, P. Giordano, in Fuel behaviour and modelling under severe transient and loss of coolant accident (LOCA) conditions, Mito, Japan, Oct. 18-21, 2011 (International Atomic Energy Agency, Vienna, Austria, 2011), IAEA-TECDOC-CD-1709, pp. 25–42 [Google Scholar]
  • Pressurized water reactor control rod ejection and boiling water reactor control rod drop accidents. Draft Regulatory Guide 1327, U.S. Nuclear Regulatory Commission, Washington, DC, USA, 2019 [Google Scholar]
  • V. Brankov, G. Khvostov, K. Mikityuk, A. Pautz, R. Restani, S. Abolhassani, G. Ledergerber, W. Wiesenack, Nucl. Eng. Des. 305, 559 (2016) [CrossRef] [Google Scholar]
  • L.O. Jernkvist, Nucl. Eng. Des. 176, 273 (1997) [CrossRef] [Google Scholar]
  • V. Guicheret-Retel, F. Trivaudey, M.L. Boubakar, P. Thevenin, Nucl. Eng. Des. 232, 249 (2004) [CrossRef] [Google Scholar]
  • B. Michel, J. Sercombe, G. Thouvenin, R. Chatelet, Eng. Fract. Mech. 75, 3581 (2008) [CrossRef] [Google Scholar]
  • N. Marchal, C. Campos, C. Garnier, Comp. Mater. Sci. 45, 821 (2009) [CrossRef] [Google Scholar]
  • R.L. Williamson, D.A. Knoll, in 20th International Conference on Structural Mechanics in Reactor Technology (SMiRT-20) (Espoo, Finland, 2009) [Google Scholar]
  • R. Mella, M.R. Wenman, J. Nucl. Mater. 467, 58 (2015) [CrossRef] [Google Scholar]
  • A.G. Evans, R.W. Davidge, J. Nucl. Mater. 33, 249 (1969) [CrossRef] [Google Scholar]
  • T.R.G. Kutty, K.N. Chandrasekharan, J.P. Panakkal, J.K. Ghosh, J. Mater. Sci. Lett. 6, 260 (1987) [CrossRef] [Google Scholar]
  • J.M. Gatt, J. Sercombe, I. Aubrun, J.C. Menard, Eng. Fail. Anal. 47, 299 (2015) [CrossRef] [Google Scholar]
  • P.V. Nerikar, K. Rudman, T.G. Desai, D. Byler, C. Unal, K.J. McClellan, S.R. Phillpot, S.B. Sinott, P. Peralta, B.P. Uberuaga, C.R. Stanek, J. Am. Ceram. Soc. 94, 1893 (2011) [CrossRef] [Google Scholar]
  • Y. Zhang, P.C. Millett, M.R. Tonks, X.M. Bai, S.B. Biner, J. Nucl. Mater. 452, 296 (2014) [CrossRef] [Google Scholar]
  • R.F. Canon, J.T.A. Roberts, R.J. Beals, J. Am. Ceram. Soc. 54, 105 (1971) [CrossRef] [Google Scholar]
  • J.T.A. Roberts, Y. Ueda, J. Am. Ceram. Soc. 55, 117 (1972) [CrossRef] [Google Scholar]
  • T. Tachibana, H. Furuya, M. Koizumi, J. Nucl. Sci. Technol. 16, 266 (1979) [CrossRef] [Google Scholar]
  • M. Oguma, J. Nucl. Sci. Technol. 19, 1005 (1982) [CrossRef] [Google Scholar]
  • S. Ravel, G. Eminet, E. Muller, L. Caillot, in Fission Gas Behaviour in Water Reactor Fuels - Seminar Proceedings (OECD Nuclear Energy Agency, Cadarache, France, 2000), pp. 347–356 [Google Scholar]
  • Y. Pontillon, M.P. Ferroud-Plattet, D. Parrat, S. Ravel, G. Ducros, C. Struzik, I. Aubrun, G. Eminet, J. Lamontagne, J. Noirot, A. Harrer, in 2004 International Meeting on LWR Fuel Performance (American Nuclear Society, Orlando, FL, USA, 2004), pp. 490–499 [Google Scholar]
  • G. Pastore, D. Pizzocri, C. Rabiti, T. Barani, P. van Uffelen, L. Luzzi, J. Nucl. Mater. 509, 687 (2018) [CrossRef] [Google Scholar]
  • J.M. Barsom, J. Am. Ceram. Soc. 51, 75 (1968) [CrossRef] [Google Scholar]
  • J. Arborelius, K. Backman, L. Hallstadius, M. Limbäck, J. Nilsson, B. Rebensdorff, G. Zhou, K. Kitano, R. Löfström, G. Rönnberg, J. Nucl. Sci. Technol. 43, 967 (2006) [CrossRef] [Google Scholar]
  • C. Delafoy, P. Dewes, in TopFuel 2006 (European Nuclear Society, Salamanca, Spain, 2006), pp. 487–491 [Google Scholar]
  • Y.H. Koo, J.Y. Oh, B.H. Lee, Y.W. Tahk, K.W. Song, J. Nucl. Mater. 405, 33 (2010) [CrossRef] [Google Scholar]
  • M. Flanagan, P. Askeljung, A. Puranen, Post-test examination results from integral, high-burnup, fueled LOCA tests at Studsvik nuclear laboratory. Report NUREG-2160, U.S. Nuclear Regulatory Commission, Washington, DC, USA, 2013 [Google Scholar]
  • H.X. Xiao, C.S. Long, Chin. Phys. B 23, 020502 (2014) [CrossRef] [Google Scholar]
  • I.R. Brearley, D.A. Macinnes, J. Nucl. Mater. 95, 239 (1980) [CrossRef] [Google Scholar]