Euratom Research and Training in 2019: the Awards collection
Open Access
EPJ Nuclear Sci. Technol.
Volume 5, 2019
Euratom Research and Training in 2019: the Awards collection
Article Number 20
Number of page(s) 9
Published online 29 November 2019
  • C. Demazière et al., Overview of the CORTEX project, in Proc. Int. Conf. Physics of Reactors − Reactor Physics paving the way towards more efficient systems (PHYSOR2018), Cancun, Mexico, April 22-26, 2018 (2018) [Google Scholar]
  • D. Rolnick et al., Tackling Climate Change with Machine Learning, arXiv:1906.05433 (2019) [Google Scholar]
  • F.C. Chen, M.R. Jahanshahi, NB-CNN: deep learning-based crack detection using convolutional neural network and Naïve Bayes data fusion, IEEE Trans. Ind. Electron 65, 4392 (2017) [CrossRef] [Google Scholar]
  • W. Li et al., Design of comprehensive diagnosis system in nuclear power plant, Ann. Nucl. Energy 109, 92 (2017) [CrossRef] [Google Scholar]
  • M.C. dos Santos et al., Deep rectifier neural network applied to the accident identification problem in a PWR nuclear power plant, Ann. Nucl. Energy 133, 400 (2019) [CrossRef] [Google Scholar]
  • R.M. Ayo-Imoru, A.C. Cilliers, Continuous machine learning for abnormality identification to aid condition-based maintenance in nuclear power plant, Ann. Nucl. Energy 118, 61 (2018) [CrossRef] [Google Scholar]
  • S. Zaferanlouei et al., Prediction of critical heat flux using anfis, Ann. Nucl. Energy 37, 813 (2010) [CrossRef] [Google Scholar]
  • S.A. Hosseini, I.E.P. Afrakoti, Neutron noise source reconstruction using the adaptive neuro-fuzzy inference system (anfis) in the vver-1000 reactor core, Ann. Nucl. Energy 105, 36 (2017) [CrossRef] [Google Scholar]
  • S.A. Hosseini, I.E.P. Afrakoti, Evaluation of a new neutron energy spectrum unfolding code based on an Adaptive Neuro-Fuzzy Inference System (ANFIS), J. Radiat. Res. 59, 436 (2018) [CrossRef] [Google Scholar]
  • F. Calivà et al., A deep learning approach to anomaly detection in nuclear reactors, in Proc. 2018 Int. Joint Conf. Neural Networks (IJCNN2018), Rio de Janeiro, Brazil, July 8-13, 2018 (2018) [Google Scholar]
  • F. De Sousa Ribeiro et al., Towards a deep unified framework for nuclear reactor perturbation analysis, in Proc. IEEE Symposium Series on Computational Intelligence (SSCI 2018), Bengaluru, India, November 18–21 (2018) [Google Scholar]
  • C. Demazière, Core sim: a multi-purpose neutronic tool for research and education, Ann. Nucl. Energy 38, 2698 (2011) [CrossRef] [Google Scholar]
  • C. Demazière, User's manual of the core sim neutronic tool, Technical report, Chalmers University of Technology, 2011 [Google Scholar]
  • G. Grandi et al., Simulate-3k models and methodology, SSP-98013, 6 (2006) [Google Scholar]
  • Y. LeCun et al., Generalization and network design strategies, Connectionism in perspective (1989), p. 143 [Google Scholar]
  • G. Huang et al., Densely connected convolutional networks, in Proc. IEEE Conf. on computer vision & pattern recognition, Honolulu, Hawaii, USA, July 22-26, 2017 (2017) [Google Scholar]
  • M. Lin et al., Network in Network, arXiv:1312.4400 (2013) [Google Scholar]
  • S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput. 9, 1735 (1997) [CrossRef] [PubMed] [Google Scholar]
  • N. Srivastava et al., Dropout: a simple way to prevent neural networks from overfitting, J. Mach. Learn. Res. 15, 1929 (2014) [Google Scholar]
  • D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv:1412.6980 (2014) [Google Scholar]