Open Access
EPJ Nuclear Sci. Technol.
Volume 6, 2020
Article Number 47
Number of page(s) 12
Published online 20 May 2020
  • M. Tourasse, M. Boidron, B. Pasquet, Fission product behaviour in phenix fuel pins at high burnup, J. Nucl. Mater. 188, 49 (1992) [CrossRef] [Google Scholar]
  • M. Inoue, K. Maeda, K. Katsuyama, K. Tanaka, K. Mondo, M. Hisada, Fuel-to-cladding gap evolution and its impact on thermal performance of high burnup fast reactor type uranium-plutonium oxide fuel pins, J. Nucl. Mater. 326, 59 (2004) [CrossRef] [Google Scholar]
  • K. Maeda, 3.16 - ceramic fuel-cladding interaction, Compr. Nucl. Mater. 3, 443 (2012) [CrossRef] [Google Scholar]
  • International Atomic Energy Agency, Structural Materials for Liquid Metal Cooled Fast Reactor Fuel Assemblies-Operational Behaviour, number NF-T-4.3 in Nuclear Energy Series, Vienna, 2012; [Google Scholar]
  • Y. Guerin, Fuel performance of fast spectrum oxide fuel, in Comprehensive Nuclear Materials, edited by R.J. Konings (Elsevier, Oxford 2012), pp. 547–578 [CrossRef] [Google Scholar]
  • M. Lainet, B. Michel, J.-C. Dumas, M. Pelletier, I. Ramière, Germinal, a fuel performance code of the pleiades platform to simulate the in-pile behaviour of mixed oxide fuel pins for sodium-cooled fast reactors, J. Nucl. Mater. 516, 30 (2019) [CrossRef] [Google Scholar]
  • V. Marelle, Validation of PLEIADES/ALCYONE 2.0 fuel performance code, Water Reactor Fuel Performance Meeting, Jeju, South Korea, 2017 [Google Scholar]
  • J.-C. Melis, J.-P. Piron, L. Roche, Fuel modeling at high burn-up: recent development of the germinal code, J. Nucl. Mater. 204, 188 (1993) [CrossRef] [Google Scholar]
  • B. Baurens, J. Sercombe, C. Riglet-Martial, L. Desgranges, L. Trotignon, P. Maugis, 3D thermo-chemical-mechanical simulation of power ramps with alcyone fuel code, J. Nucl. Mater. 452, 578 (2014) [CrossRef] [Google Scholar]
  • P. Konarski, J. Sercombe, C. Riglet-Martial, L. Noirot, I. Zacharie-Aubrun, K. Hanifi, M. Fregonèsé, P. Chantrenne, 3d simulation of a power ramp including fuel thermochemistry and oxygen thermodiffusion, J. Nucl. Mater. 519, 104 (2019) [CrossRef] [Google Scholar]
  • S. Simunovic, J. W. Mcmurray, T. M. Besmann, E. Moore, M.H.A. Piro, Coupled Mass and Heat Transport Models for Nuclear Fuels using Thermodynamic Calculations, Technical Report, Oak Ridge National Laboratory, 2018 [CrossRef] [Google Scholar]
  • M. Piro, S. Simunovic, T. Besmann, B. Lewis, W. Thompson, The thermochemistry library thermochimica, Comput. Mater. Sci. 67, 266 (2013) [CrossRef] [Google Scholar]
  • R. Williamson, J. Hales, S. Novascone, M. Tonks, D. Gaston, C. Permann, D. Andrs, R. Martineau, Multidimensional multiphysics simulation of nuclear fuel behavior, J. Nucl. Mater. 423, 149 (2012) [CrossRef] [Google Scholar]
  • T. Uwaba, J. Nemoto, I. Ishitani, M. Ito, Coupled computer code study on irradiation performance of a fast reactor mixed oxide fuel element with an emphasis on the fission product cesium behavior, Nucl. Eng. Des. 331, 186 (2018) [CrossRef] [Google Scholar]
  • M. Ishida, et al., in Proceedings of the fall meeting of the atomic energy society of Japan, 1987, p. J77 [Google Scholar]
  • Y. Saito, et al., in Proceedings of the fall meeting of the atomic energy society of Japan, 1988, p. H14 [Google Scholar]
  • T. Uwaba, T. Mizuno, J. Nemoto, I. Ishitani, M. Ito, Development of a mixed oxide fuel pin performance analysis code “CEDAR”: Models and analyses of fuel pin irradiation behavior, Nucl. Eng. Des. 280, 27 (2014) [CrossRef] [Google Scholar]
  • P. Spencer, A brief history of CALPHAD, Calphad 32, 1 (2008) [CrossRef] [Google Scholar]
  • U.R. Kattner, The Calphad method and its role in material and process development. Tecnol. Metal. Mater. Min. 13, 3 (2016) [CrossRef] [Google Scholar]
  • P. Garcia, J.P. Piron, D. Baron, A model for the oxygen potential of oxide fuels at high burnup, Technical Report, International Atomic Energy Agency (IAEA), 1997, [Google Scholar]
  • B. Sundman, U.R. Kattner, M. Palumbo, S.G. Fries, Opencalphad – a free thermodynamic software, Integr. Mater. Manuf. Innov. 4, 1 (2015) [CrossRef] [Google Scholar]
  • B. Sundman, X.-G. Lu, H. Ohtani, The implementation of an algorithm to calculate thermodynamic equilibria for multi-component systems with non-ideal phases in a free software, Comput. Mater. Sci. 101, 127 (2015) [CrossRef] [Google Scholar]
  • T. Besmann, SOLGASMIX-PV, a computer program to calculate equilibrium relationships in complex chemical systems (Oak Ridge National Lab., TN, USA, 1977) [Google Scholar]
  • G. Eriksson, Thermodynamic studies of high temperature equilibria. XII. SOLGASMIX, a computer program for calculation of equilibrium composition in multiphase systems, Chem. Scr. 8, 100 (1975) [Google Scholar]
  • C. Weber, Convergence of the equilibrium code solgasmix, J. Comput. Phys. 145, 655 (1998) [CrossRef] [Google Scholar]
  • TAF-ID homepage, 2019, [Google Scholar]
  • C. Gueneaú, S. Gossé, A. Quaini, N. Dupin, B. Sundman, M. Kurata, T. Besmann, P. Turchi, J. Dumas, E. Corcoran, M. Piro, T. Ogata, R. Hania, B. Lee, R. Kennedy, S. Massara, FUELBASE, TAF-ID databases and OC software: Advanced computational tools to perform thermodynamic calcu-lations on nuclear fuel materials, in Proceedings of the 7th European Review Meeting on Severe Accident Research 2015, Marseille, France, 2015 [Google Scholar]
  • M. Hillert, The compound energy formalism, J. Alloys Compd. 320, 161 (2001) [CrossRef] [Google Scholar]
  • C. Guéneau, N. Dupin, B. Sundman, C. Martial, J.-C. Dumas, S. Gossé, S. Chatain, F. D. Bruycker, D. Manara, R.J. Konings, Thermodynamic modelling of advanced oxide and carbide nuclear fuels: Description of the U-Pu-O-C systems, J. Nucl. Mater. 419, 145 (2011) [CrossRef] [Google Scholar]
  • M. Hillert, B. Jansson, B. Sundman, J. Ågren, A two-sublattice model for molten solutions with different tendency for ionization, Metall. Trans. A 16, 261 (1985) [CrossRef] [Google Scholar]
  • B. Sundman, Modification of the two-sublattice model for liquids, Calphad 15, 109 (1991) [CrossRef] [Google Scholar]
  • H. Kleykamp, The chemical state of the fission products in oxide fuels, J. Nucl. Mater. 131, 221 (1985) [CrossRef] [Google Scholar]
  • J.-O. Andersson, T. Helander, L. Höglund, P. Shi, B. Sundman, Thermo−Calc & DICTRA, computational tools for materials science, Calphad 26, 273 (2002) [CrossRef] [Google Scholar]
  • T. Besmann, J. McMurray, B. Gaston, S. Simunovic, M. Piro, Modeling thermochemistry of fuel and coupling to fuel performance codes, in Proceedings of Top Fuel, Boise, ID, USA, 2016 [Google Scholar]
  • E.H.P. Cordfunke, R.J.M. Konings, Thermochemical data for reactor materials and fission products: The ECN database, J. Phase Equilib. 14, 457 (1993) [CrossRef] [Google Scholar]
  • R. Schram, R. Konings, W. Rijnsburger, TBASE CONSULT Manual, The Netherlands Energy Research Foundation ECN, 2002 [Google Scholar]
  • E. Cordfunke, R. Konings, Thermochemical Data for Reactor Materials and Fission Products (North-Holland, Amsterdam, 1990) [Google Scholar]
  • T.B. Lindemer, T.M. Besmann, Chemical thermodynamic representation of ⟨UO2±x⟩, J. Nucl. Mater. 130, 473 (1985) [CrossRef] [Google Scholar]
  • T.M. Besmann, T.B. Lindemer, Chemical thermodynamic representation of ⟨PuO2−x⟩ and ⟨U1−zPuzOw⟩, J. Nucl. Mater. 130, 489 (1985) [CrossRef] [Google Scholar]
  • T.B. Lindemer, J. Brynestad, Review and chemical thermodynamic representation of ⟨U1−z CezO2±x⟩ and ⟨U1−z LnzO2±x⟩; Ln = Y, La, Nd, Gd, J. Am. Ceram. Soc. 69, 867 (1986) [CrossRef] [Google Scholar]
  • G. Rimpault, The ERANOS code and data system for fast reactor neutronic analyses, in Proceedings of the PHYSOR2002 International Conference on the New Frontiers of Nuclear Technology: Reactor Physics, Safety and High Performance Computing, Seoul, South Korea, 2002 [Google Scholar]
  • A. Koning, R. Forrest, M. Kellett, R. Mills, H. Henriksson, Y. Rugama, JEFF Report 21: The JEFF-3.1 Nuclear Data Library, 2006 [Google Scholar]
  • P. Verpeaux, T. Charras, A. Millard, CASTEM 2000: une approche moderne du calcul des structures (Pluralis, 1988) p. 261 [Google Scholar]
  • V. Bouineau, M. Lainet, N. Chauvin, M. Pelletier, V. Di Marcello, P. Van Uffelen, C. Walker, Assessment of SFR fuel pin performance codes under advanced fuel for minor actinide transmutation, American Nuclear Society - ANS; La Grange Park (United States), 2013 [Google Scholar]
  • B. Lewis, W. Thompson, F. Iglesias, Fission Product Chemistry in Oxide Fuels, in Comprehensive Nuclear Materials edited by R.J. Konings (Elsevier, Oxford, 2012), pp. 515–546 [CrossRef] [Google Scholar]
  • J. Adams, M. Carboneau, National low-level waste management program radionuclide report series. Volume 2: niobium-94, 1995 [Google Scholar]
  • T.B. Massalski, Binary alloy phase diagrams, 2nd edn. (ASM International, Materials Park, Ohio, 1990) [Google Scholar]
  • C. Guéneau, A. Chartier, L.V. Brutzel, Thermodynamic and thermophysical properties of the actinide oxides, in Comprehensive Nuclear Materials edited by R.J. Konings (Elsevier, Oxford, 2012), pp. 21–59 [CrossRef] [Google Scholar]
  • K. Naito, T. Tsuji, T. Matsui, A. Date, Chemical state, phases and vapor pressures of fission-produced noble metals in oxide fuel, J. Nucl. Mater. 154, 3 (1988) [CrossRef] [Google Scholar]
  • K. Bagnall, Selenium, tellurium and polonium, in The Chemistry of Sulphur, Selenium, Tellurium and Polonium, Pergamon Texts in Inorganic Chemistry edited by M. Schmidt, W. Siebert, K. Bagnall (Pergamon, Oxford, 1973), pp. 935–1008 [CrossRef] [Google Scholar]
  • J. McFarlane, J.C. LeBlanc, Fission-product tellurium and cesium telluride chemistry revisited, Technical Report, Canada, 1996, [Google Scholar]
  • E. Aitken, Thermal diffusion in closed oxide fuel systems, J. Nucl. Mater. 30, 62 (1969) [CrossRef] [Google Scholar]
  • A. Karahan, J. Buongiorno, Modeling of thermo-mechanical and irradiation behavior of mixed oxide fuel for sodium fast reactors, J. Nucl. Mater. 396, 272 (2010) [CrossRef] [Google Scholar]
  • J. Rouault, P. Chellapandi, B. Raj, P. Dufour, C. Latge, L. Paret, P. Pinto, G.H. Rodriguez, G.-M. Gautier, G.-L. Fiorini, M. Pelletier, D. Gosset, S. Bourganel, G. Mignot, F. Varaine, B. Valentin, P. Masoni, P. Martin, J.-C. Queval, D. Broc, N. Devictor, Sodium Fast Reactor Design:Fuels, Neutronics, Thermal-Hydraulics, Structural Mechanics and Safety (Springer US, Boston, MA, 2010), pp. 2321–2710 [Google Scholar]
  • T. Ishii, T. Mizuno, Thermal conductivity of cesium molybdate Cs2MoO4, J. Nucl. Mater. 231, 242 (1996) [CrossRef] [Google Scholar]
  • T. Ishii, T. Mizuno, An investigation of the thermal conductivity of Cs2MoO4, J. Nucl. Mater. 247, 82 (1997) [CrossRef] [Google Scholar]
  • M. Takano, K. Minato, K. Fukuda, S. Sato, H. Ohashi, Thermal expansion and thermal conductivity of cesium uranates, J. Nucl. Sci. Technol. 35, 485 (1998) [CrossRef] [Google Scholar]
  • I. Schewe-Miller, P. Böttcher, Synthesis and crystal structures of K5Se3, Cs5Te3 and Cs2Te, Z. Kristallograph. 196, 137 (1991) [CrossRef] [Google Scholar]
  • T.B. Rymer, P.G. Hambling, The lattice constant of caesium iodide, Acta Crystallograph. 4, 565 (1951) [CrossRef] [Google Scholar]
  • F.X.N.M. Kools, A.S. Koster, G.D. Rieck, The structures of potassium, rubidium and caesium molybdate and tungstate, Acta Crystallograph. Sect. B 26, 1974 1970 [Google Scholar]
  • A. Reis, H. Hoekstra, E. Gebert, S. Peterson, Redetermination of the crystal structure of barium uranate, J. Inorg. Nucl. Chem. 38, 1481 (1976) [CrossRef] [Google Scholar]
  • C. Sari, G. Schumacher, Oxygen redistribution in fast reactor oxide fuel, J. Nucl. Mater. 61, 192 (1976) [CrossRef] [Google Scholar]
  • C. Shuang-Lin, C. Kuo-Chih, Y. Chang, On a new strategy for phase diagram calculation 1. Basic principles, Calphad 17, 237 (1993) [CrossRef] [Google Scholar]
  • C. Shuang-Lin, C. Kuo-Chih, Y. Chang, On a new strategy for phase diagram calculation 2. Binary systems, Calphad 17, 287 (1993) [CrossRef] [Google Scholar]
  • L. Noirot, Margaret: A comprehensive code for the description of fission gas behavior, Nucl. Eng. Des. 241, 2099 2011 [Google Scholar]