Fuel Cycle Simulation TWoFCS 2021
Open Access
EPJ Nuclear Sci. Technol.
Volume 7, 2021
Fuel Cycle Simulation TWoFCS 2021
Article Number 21
Number of page(s) 13
DOI https://doi.org/10.1051/epjn/2021020
Published online 25 November 2021
  • G. Martin, M. Guyot, F. Laugier, G. Senentz, G. Krivtchik, B. Carlier, D. Lecarpentier, F. Descamps, C. Chabert, R. Eschbach, French scenarios toward fast plutonium multi-recycling in PWR, in ICAPP, Charlotte, North Carolina, 2018 [Google Scholar]
  • N. Thiollière, J.-B. Clavel, F. Courtin, X. Doligez, M. Ernoult, A.-A. Zakari-Issoufou, G. Krivtchik, B. Leniau, B. Mouginot, A. Bidaud, S. David, V. Lebrin, C. Perigois, Y. Richet, A. Somaini, A methodology for performing sensitivity analysis in dynamic fuel cycle simulation studies applied to a PWR fleet simulated with the CLASS tool, EPJ Nucl. Sci. Technol. 4, 13 (2018) [Google Scholar]
  • G. Youinou, A. Vasile, “Plutonium Multirecycling in Standard PWRs Loaded with Evolutionary Fuels,” Nuclear Scienceand Engineering - NUCL SCI ENG, vol. 151, pp. 25–45, 09 2005 [Google Scholar]
  • B. Mouginot, B. Leniau, N. Thiollière, M. Ernoult, S. David, X. Doligez, A. Bidaud, O. Meplan, R. Montesanto, G. Bellot, et al., “Core library for advanced scenario simulation, CLASS: principle & application,” in International Conference “The Role of Reactor Physics toward a Sustainable Future” (PHYSOR 2014), pp. 12–p, 2014 [Google Scholar]
  • O. Méplan, “MURE 2 : SMURE, Serpent-MCNP Utility for Reactor Evolution User Guide.” http://lpsc.in2p3.fr/MURE/html/SMURE/UserGuide/UserGuide.html, 2021 [Google Scholar]
  • R. Largenton, Modélisation du comportement effectif du combustible MOX par une analyse micro-mécanique en champs de transformation non uniformes. PhD thesis, Université de Provence Aix-Marseille, 2012 [Google Scholar]
  • U. Mertyurek, I. C. Gauld, “Development of ORIGEN libraries for mixed oxide (MOX) fuel assembly designs,” Nuclear Engineering and Design, vol. 297, pp. 220–230, 2016 [Google Scholar]
  • B. Rearden, W. Marshall, C. Perfetti, J. Miss, Y. Richet, “Effect of Undersampling Biases in Monte Carlo Reaction Rate Tallies,” EGAMCT meeting, Kurchatov Institute, Moscow, 2013. [Google Scholar]
  • J. Leppänen, M. Pusa, T. Viitanen, V. Valtavirta, T. Kaltiaisenaho, “The Serpent Monte Carlo code: Status, development and applications in 2013,” Annals of Nuclear Energy, vol. 82, pp. 142–150, 2015. Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2013, SNA + MC 2013. Pluri- and Trans-disciplinarity, Towards New Modeling and Numerical Simulation Paradigms [Google Scholar]
  • F. Courtin, N. Thiollière, X. Doligez, M. Ernoult, B. Leniau, J. Liang, B. Mouginot, A.-A. Zakari-Issoufou, “Assessment of plutonium inventory management in the french nuclear fleet with the fuel cycle simulator CLASS,” Nuclear Engineering and Design, vol. 377, p. 111042, 04 2021 [Google Scholar]
  • A. Somaini, S. David, X. Doligez, A. Zakari-Issoufou, A. Bidaud, N. Cappelan, O. Méplan, A. Nuttin, P. Prévot, F. Courtin, et al., “The impact of reactor model simplification for fuel evolution: A bias quantification for fuel cycle dynamic simulations,” in 2016 International Congress on Advances in Nuclear Power Plants (ICAPP 2016), pp. 1045–1053, 2016 [Google Scholar]
  • F. Courtin, Étude de l’incinération du plutonium en REP MOX sur support d’uranium enrichi avec le code de simulation dynamique du cycle CLASS. PhD thesis, Université Bretagne Loire, 2017 [Google Scholar]
  • B. Leniau, B. Mouginot, N. Thiollière, X. Doligez, A. Bidaud, F. Courtin, M. Ernoult, S. David, “A neural network approach for burn-up calculation and its application to the dynamic fuel cycle code CLASS,” Annals of Nuclear Energy, vol. 81, 07 2015 [Google Scholar]