Open Access
Int. J. Metrol. Qual. Eng.
Volume 11, 2020
Article Number 4
Number of page(s) 11
Published online 20 March 2020
  • E. Vahabli, S. Rahmati, Application of an RBF neural network for FDM parts' surface roughness prediction for enhancing surface quality, Int. J. Precis. Eng. Manuf. 17 , 1589–1603 (2016) [CrossRef] [Google Scholar]
  • Y.W. Chang, N.J. Kim, C.S. Lee, Improvement of surface roughness on ABS 400 polymer using design of experiments (DOE), Mater. Sci. Forum 561-565 , 2389–2392 (2007) [CrossRef] [Google Scholar]
  • O. Luzanin, D. Movrin, M. Plancak, Experimental investigation of extrusion speed and temperature effects on arithmetic mean surface roughness in FDM built specimens, J. Tech. Plastic. 38 , 179–190 (2013) [Google Scholar]
  • L.M. Galantucci, F. Lavecchia, G. Percoco, Quantitative analysis of a chemical treatment to reduce roughness of parts fabricated using fused deposition modeling, CIRP Ann. 59 , 247–250 (2010) [CrossRef] [Google Scholar]
  • A. Peng, X. Xiao, R. Yue, Process parameter optimization for fused deposition modeling using response surface methodology combined with fuzzy inference system, Int. J. Adv. Manuf. Technol. 73 , 87–100 (2014) [Google Scholar]
  • I. Durgun, R. Ertan, Experimental investigation of FDM process for improvement of mechanical properties and production cost, Rapid Prototyp. J. 20 , 228–235 (2014) [Google Scholar]
  • A. Boschetto, L. Bottini, F. Veniali, Integration of FDM surface quality modeling with process design, Addit. Manuf. 12 , 334–344 (2016) [Google Scholar]
  • A. Boschetto, V. Giordano, F. Veniali, 3D roughness profile model in fused deposition modelling, Rapid Prototyp. J. 19 , 240–252 (2013) [Google Scholar]
  • A.K. Sood, S.S. Mahapatra, R.K. Ohdar, Weighted principal component approach for improving surface finish of ABS plastic parts built through fused deposition modelling process, Int. J. Rapid Manuf. 2 , 1–2 (2011) [Google Scholar]
  • A. Garg, A. Bhattacharya, A. Batish, Failure investigation of fused deposition modelling parts fabricated at different raster angles under tensile and flexural loading, Proc. Inst. Mech. Eng. B J. Eng. Manuf. 231 , 2031–2039 (2015) [CrossRef] [Google Scholar]
  • N. Ayrilmis, Effect of layer thickness on surface properties of 3D printed materials produced from wood flour/PLA filament, Polym. Test. 71 , 163–166 (2018) [Google Scholar]
  • H. Rahman, T.D. John, M. Sivadasan, N.K. Singh, Investigation on the scale factor applicable to ABS based FDM additive manufacturing, Mater. Today, 5 , 1640–1648 (2018) [Google Scholar]
  • Y. Tlegenov, G.S. Hong, W.F. Lu, Nozzle condition monitoring in 3D printing, Robot. CIM. −Int. Manuf. 54 , 45–55 (2018) [CrossRef] [Google Scholar]
  • A. Hanus, N. Spirutova, J. Beno, Surface quality of foundry pattern manufactured by FDM method, Rapid Prototyp. J. 11 , 15–20 (2011) [Google Scholar]
  • C.-C. Kuo, R.-C. Mao, Development of a precision surface polishing system for parts fabricated by fused deposition modeling, Mater. Manuf. Process. 31 , 8 (2015) [Google Scholar]
  • N. Jayanth, P. Senthil, C. Prakash, Effect of chemical treatment on tensile strength and surface roughness of 3D-printed ABS using the FDM process, Virtual Phys. Prototy. 13 , 3 (2018) [CrossRef] [Google Scholar]
  • S.-U. Zhang, J. Han, H.-W. Kang, Temperature-dependent mechanical properties of ABS parts fabricated by fused deposition modeling and vapor smoothing, Int. J. Precis. Eng. Man. 18 , 763–769 (2017) [CrossRef] [Google Scholar]