Open Access
Volume 36, Number 2, April 2018
Page(s) 211 - 219
Published online 03 July 2018
  • Abdulrahim M, Lind R. Control and Simulation of a Multi-Role Morphing Micro Air Vehicle[R]. AIAA-2005-6481 [Article] [Google Scholar]
  • Bourdin P, Gatto A, Friswell M I. The Application of Variable Cant Angle Winglets for Morphing Aircraft Control[R]. AIAA-2006-3660 [Article] [Google Scholar]
  • Grant D T, Abdulrahimy M, Lind R. Flight Dynamics of a Morphing Aircraft Utilizing Independent Multiple-Joint Wing Sweep[R]. AIAA-2006-6505 [Article] [Google Scholar]
  • Grant D T, Chakravarthy A, Lind R. Modal Interpretation of Time-Varying Eigenvectors of Morphing Aircraft[R]. AIAA-2009-5848 [Article] [Google Scholar]
  • Grant D T. Modeling and Dynamic Analysis of a Multi-Joint Morphing Aircraft[D]. Florida, University of Florida, 2009 [Article] [Google Scholar]
  • Seigler T M. Dynamics and Control of Morphing Aircraft[D]. Virginia, Virginia Polytechnic Institute and State University, 2005 [Article] [Google Scholar]
  • Seigler T M, Neal D A. Analysis of Transition Stability for Morphing Aircraft [J]. Journal of Guidance Control and Dynamics. 2009, 32 6: 1947- 1953 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Yue T, Wang L, Ai J. Longitudinal Linear Parameter Varying Modeling and Simulation of Morphing Aircraft [J]. Journal of Aircraft, 2013, 50 6: 1673- 1681 [Article] [CrossRef] [Google Scholar]
  • De Visser C C, Van Kampen E, Chu Q P, et al. A New Framework for Aerodynamic Model Identification with Multivariate Splines[R]. AIAA-2013-4748 [Article] [Google Scholar]
  • Batterson J G. Analysis of Oscillatory Motion of a Light Airplane at High Value of Lift Coefficient[R]. NASA TM-84563, 1983 [Article] [Google Scholar]
  • Awanou G, Lai M, Wenston P. The Multivariate Spline Method for Scattered Data Fitting and Numerical Solutions of Partial Differential Equations[A]. Wavelets and Splines, Brentwoxl Nashboro, 2005: 24-75 [Article] [Google Scholar]
  • Lai M J. Multivariate Splines for Data Fitting and Approximation[C]//12th Approximation Theory Conference, 2007 [Google Scholar]
  • Lai M J, Schumaker L L. Spline Function on Triangulations [M]. New York, Cambridge University Press, 2007: 18- 23 [CrossRef] [Google Scholar]
  • De Visser C C, Chu Q P, Mulder J A. A New Approach to Linear Regression with Multivariate Splines [J]. Automatica, 2009, 45 12: 2903- 2909 [Article] [CrossRef] [Google Scholar]
  • De Visser C C, Chu Q P, Mulder J A. Differential Constraints for Bounded Recursive Identification with Multivariate Splines [J]. Automatica, 2011, 47 9: 2059- 2066 [Article] [CrossRef] [Google Scholar]
  • De Visser C C, Mulder J A, Chu Q P. Validating the Multidimensional Spline Based Global Aerodynamic Model for the Cessna CitationⅡ[R]. AIAA-2011-6356 [Article] [Google Scholar]
  • Sun L G, De Visser C C, Chu Q P, et al. Online Aerodynamic Model Identification Using a Recursive Sequential Method for Multivariate Splines [J]. Journal of Guidance Control and Dynamics, 2013, 36 5: 1278- 1288 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • Tol H J, De Visser C C, Van Kampen E, et al. Nonlinear Multivariate Spline-Based Control Allocation for High-Performance Aircraft [J]. Journal of Guidance Control and Dynamics, 2014, 37 6: 1840- 1862 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  • De Visser C C. Global Nonlinear Model Identification with Multivariate Splines[D]. Zuthpen, Delft University of Technology, 2011 [Article] [Google Scholar]
  • An J, Yan M, Zhou W, et al. Aircraft Dynamic Response to Variable Wing Sweep Geometry [J]. Journal of Aircraft, 1988, 25 3: 216- 221 [Article] [CrossRef] [Google Scholar]
  • Xu X W, Zhang W. Research on Methods of Dynamic Modeling and Simulation for Morphing Wing Aircraft[R]. ICAS 2012-698 [Article] [Google Scholar]