Open Access
Issue
Knowl. Manag. Aquat. Ecosyst.
Number 419, 2018
Article Number 28
Number of page(s) 10
DOI https://doi.org/10.1051/kmae/2018017
Published online 13 June 2018
  • Agasild H, Nõges T. 2005. Cladoceran and rotifer grazing on bacteria and phytoplankton in two shallow eutrophic lakes: in situ measurement with fluorescent microspheres. J Plankton Res 27: 1155–1174. [CrossRef] [Google Scholar]
  • Angeler DG, Johnson RK. 2013. Algal invasions, blooms and biodiversity in lakes: accounting for habitat-specific responses. Harmful Algae 23: 60–69. [CrossRef] [Google Scholar]
  • APHA. 2001. Standard methods for the examination of water and wastewater. American Public Health Association, 21st ed. Washington, DC, USA: APHA-AWWA-WEF. [Google Scholar]
  • Arvola L, Salonen K, Kankaala P, Lehtovaara A. 1992. Vertical distributions of bacteria and algae in a steeply stratified humic lake under high grazing pressure from Daphnia longispina. Hydrobiologia 229: 253–269. [CrossRef] [Google Scholar]
  • Berman T, Sherr BF, Sherr E, Wynne D, McCarthy JJ. 1984. The characteristics of ammonium and nitrate uptake by phytoplankton in Lake Kinneret. Limnol Oceanogr 29: 287–297. [CrossRef] [Google Scholar]
  • Björnerås C. 2014. Grazing resistance due to trichocysts may boost bloom formation in the HAB species Gonyostomum semen. MSc. Thesis, University of Lund, Lund. [Google Scholar]
  • Błędzki LA, Rybak JI. 2016. Freshwater crustacean zooplankton of Europe. Switzerland: Springer, pp. 1–918. [Google Scholar]
  • Brett MT, Kainz MJ, Taipale SJ, Seshan H. 2009. Phytoplankton, not allochthonous carbon, sustains herbivorous zooplankton production. Proc Natl Acad Sci USA 106: 21197–21201. [CrossRef] [Google Scholar]
  • Cowles RP, Brambel CE. 1936. A study of the environmental conditions in a bog pond with special reference to the diurnal vertical distribution of Gonyostomum semen. Biol Bull 71: 286–298. [CrossRef] [Google Scholar]
  • Cronberg G, Lindmark G, Björk S. 1988. Mass development of the flagellate Gonyostomum semen (Raphidophyta) in Swedish forest lakes − an effect of acidification? Hydrobiologia 161: 217–236. [CrossRef] [Google Scholar]
  • Domingues RB, Barbosa AB, Sommer U., Galvão HM. 2011. Ammonium, nitrate and phytoplankton interactions in a freshwater tidal estuarine zone: potential effects of cultural eutrophication. Aquat Sci 73: 331–343. [CrossRef] [Google Scholar]
  • Drouet F, Cohen A. 1935. The morphology of Gonyostomum semen from Woods Hole, Massachusetts. Biol Bull 68: 422–439. [CrossRef] [Google Scholar]
  • Druvietis I, Spriņģe G, Briede A, Kokorīte I., Parele E. 2010. A comparative assessment of the bog aquatic environment of the Ramsar site of Teiči Neture Reserve and North Vidzeme Biosphere Reserve, Latvia. In: Klavins M., ed. Mires and Peat. Riga: University of Latvia Press, pp. 19–40. [Google Scholar]
  • Ejsmont-Karabin J. 1998. Empirical equations for biomass calculation of planktonic rotifers. Pol Arch Hydrobiol 45: 513–522. [Google Scholar]
  • Eloranta P, Räike A. 1995. Light as a factor affecting the vertical distribution of Gonyostomum semen (Ehr.) Diesing (Raphidophyceae) in lakes. Aqua Fenn 25: 15–22. [Google Scholar]
  • Gladyshev MI, Temerova TA, Dubovskaya OP, Kolmakov VI, Ivanova EA. 1999. Selective grazing on Cryptomonas by Ceriodaphnia quadrangular fed a natural phytoplankton assemblage. Aquat Ecol 33: 347–353. [CrossRef] [Google Scholar]
  • Górniak A. 2006. Jeziora Wigierskiego Parku Narodowego. Aktualna jakość i trofia wód. Wyd. UwB, Białystok, pp. 1–176 [in Polish]. [Google Scholar]
  • Grabowska M, Górniak A. 2004. Letni fitoplankton wybranych sucharów Wigierskiego Parku Narodowego. In Fałtynowicz Z, Rant-Tanajewska M. eds. [Google Scholar]
  • Hansson LA. 2000. Synergistic effects of food web dynamics and induced behavioral responses in aquatic ecosystems. Ecology 81: 842–851. [CrossRef] [Google Scholar]
  • Havens KE. 1989. Seasonal succession in the plankton of a naturally acidic, highly humic lake in Northeastern Ohio, USA. J Plankton Res 11: 1321–1327. [CrossRef] [Google Scholar]
  • Heisler J, Glibert PM, Burkholder JM, et al. 2008. Eutrophication and harmful algal blooms: a scientific consensus. Harmful Algae 8: 3–13. [CrossRef] [PubMed] [Google Scholar]
  • Herndon J, Cochlan WP. 2007. Nitrogen utilization by the raphidophyte Heterosigma akashiwo: growth and uptake kinetics in laboratory cultures. Harmful Algae 6: 260–270. [CrossRef] [Google Scholar]
  • Hillebrand H, Dürselen CD, Kirschtel D, Pollingher U, Zohary T. 1999. Biovolume calculation for pelagic and benthic microalgae. J Phycol 35: 403–424. [CrossRef] [Google Scholar]
  • Hongve D, Løvstad Ø, Bjørndalen K. 1988. Gonyostomum semen − a new nuisance to bathers in Norwegian lakes. Verh Internat Verein Limnol 23: 430–434. [Google Scholar]
  • Hutorowicz A, Szeląg-Wasielewska E, Grabowska M, Owsianny PM, Pęczuła W, Luścińska M. 2006. The occurrence of Gonyostomum semen (Raphidophyceae) in Poland. Fragm Flor Geobot Pol 13: 399–407. [Google Scholar]
  • ISO 10260. 1992. Water quality − Measurement of biochemical parameters − Spectrometric determination of the chlorophyll-a concentration. Warszawa: PKN. [Google Scholar]
  • Johansson KSL, Vrede T, Lebret K, Johnson RK. 2013. Zooplankton feeding on the nuisance flagellate Gonyostomum semen. PLoS ONE 8: e62557. [CrossRef] [PubMed] [Google Scholar]
  • Johansson KS, Lührig K, Klaminder J, Rengefors K. 2016a. Development of a quantitative PCR method to explore the historical occurrence of a nuisance microalga under expansion. Harmful Algae 56: 67–76. [CrossRef] [PubMed] [Google Scholar]
  • Johansson KS, Trigal C, Vrede T, van Rijswijk P, Goedkoop W, Johnson RK. 2016b. Algal blooms increase heterotrophy at the base of boreal lake food webs − evidence from fatty acid biomarkers. Limnol Oceanogr 61: 1563–1573. [CrossRef] [Google Scholar]
  • Jones RI. 1988. Vertical distribution and diel migration of flagellated phytoplankton in a small humic lake. Hydrobiologia 161: 75–87. [CrossRef] [Google Scholar]
  • Kamiyama T, Itakura S, Nagasaki K. 2000. Changes in microbial loop components: effects of a harmful algal bloom formation and its decay. Aquat Microb Ecol 21: 21–30. [CrossRef] [Google Scholar]
  • Karosiene J, Kasperovičiene J, Koreiviene J, Vitonyte I. 2014. Assessment of the vulnerability of Lithuanian lakes to expansion of Gonyostomum semen (Raphidophyceae). Limnologica 45: 7–15. [CrossRef] [Google Scholar]
  • Korneva LG. 2000. Ecological aspects of the mass development of Gonyostomum semen (Ehr.) Dies. (Raphidophyta). Algologia 10: 265–277. [Google Scholar]
  • Korneva LG. 2014. Invasions of alien species of planktonic microalgae into the fresh waters of Holarctic (Review). Russ J Biol Inv 5: 65–81. [CrossRef] [Google Scholar]
  • Laugaste R, Nõges P. 2005. Nuisance alga Gonyostomum semen: implications for its global expansion. In Ramachandra TV, Ahalya N, Murty CR., eds. Aquatic Ecosystems, Conservation, Restoration and Management. Bangalore: Capital Publishing Company, pp. 77–87. [Google Scholar]
  • Le Cohu R, Guitard J, Comoy N, Brabet J. 1989. Gonyostomum semen (Raphidophycées), nuisance potentielle des grands réservoirs français? L'exemple du lac de Pareloup. Arch Hydrobiol 117: 225–236. [Google Scholar]
  • Lebret K, Fernandez MF, Hagman CHC, Rengefors K, Hansson L-A. 2012. Grazing resistance allows bloom formation and may explain invasion success of Gonyostomum semen. Limnol Oceanogr 57: 727–734. [CrossRef] [Google Scholar]
  • Lebret K, Tesson S, Kritzberg E, Carmelo T, Rengefors, K 2015. Phylogeography of the freshwater raphidophyte Gonyostomum semen confirms a recent expansion in northern Europe by a single haplotype. J Phycol 51: 768–781. [CrossRef] [PubMed] [Google Scholar]
  • Lee S, Fuhrman JA. 1987. Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Appl Environ Microbiol 53: 1298–1303. [Google Scholar]
  • Lepistö L, Antikainen S, Kivinen J. 1994. The occurrence of Gonyostomum semen (Ehr.) Diesing in Finnish lakes. Hydrobiologia 273: 1–8. [CrossRef] [Google Scholar]
  • Lodge DM. 1993. Biological invasions: lessons for ecology. Trends Ecol Evol 8: 133–137. [CrossRef] [PubMed] [Google Scholar]
  • Murphy J, Riley JP. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27: 31–36. [CrossRef] [Google Scholar]
  • Neal C, Neal M, Wickham H. 2000. Phosphate measurement in natural waters: two examples of analytical problems associated with silica interference using phosphomolybdic acid methodologies. Sci Total Environ 251/252: 513–542. [Google Scholar]
  • Negro AI, De Hoyos C, Vega JC. 2000. Phytoplankton structure and dynamics in Lake Sanabria and Valparaíso reservoir (NW Spain). Hydrobiologia 424: 25–37. [CrossRef] [Google Scholar]
  • Patalas K. 1960. Stosunki termiczne i tlenowe oraz przezroczystość wody w 44 jeziorach okolic Węgorzewa. Rocz Nauk Roln Ser B 77: 105–222 [in Polish]. [Google Scholar]
  • Pęczuła W. 2013. Habitat factors accompanying the mass appearances of nuisance, invasive and alien algal species Gonyostomum semen (Ehr.) Diesing in humic lakes of Eastern Poland. Pol J Ecol 61: 535–543. [Google Scholar]
  • Pęczuła W, Poniewozik M, Szczurowska A. 2013. Gonyostomum semen (Ehr.) Diesing bloom formation in nine lakes of Polesie region (Cental-Eastern Poland). Ann Limnol Int J Lim 49: 301–308. [CrossRef] [Google Scholar]
  • Pęczuła W, Mencfel R, Kowalczyk-Pecka D. 2014. Among-lake variation in vertical distribution of invasive, bloom-forming algal species Gonyostomum semen (Raphidophyceae) in stratified humic lakes of eastern Poland. Int Rev Hydrobiol 99: 317–325. [CrossRef] [Google Scholar]
  • Pęczuła W, Toporowska M, Pawlik-Skowrońska B, Koreiviene J. 2017. An experimental study on the influence of the bloom-forming alga Gonyostomum semen (Raphidophyceae) on cladoceran species Daphnia magna. Knowl Manag Aquat Ecosyst 418: 15. https://doi.org/10.1051/kmae/2017006 [Google Scholar]
  • Pithart D, Pechar L, Mattsson G. 1997. Summer blooms of raphidophyte Gonyostomum semen and its diurnal vertical migration in a floodplain pool. Algol Stud/Arch Hydrobiol Suppl 85: 119–133. [Google Scholar]
  • Pociecha A, Solarz W, Najberek K, Wilk-Woźniak E 2016. Native, alien, cosmopolitan, or cryptogenic? A framework for clarifying the origin status of rotifers. Aquat Biol 24: 141–149. [CrossRef] [Google Scholar]
  • Porter KG, Feig YS. 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25: 943–948. [CrossRef] [Google Scholar]
  • Rengefors K, Weyhenmeyer GA, Bloch I. 2012. Temperature as a driver for the expansion of the microalga Gonyostomum semen in Swedish lakes. Harmful Algae 18: 65–73. [CrossRef] [Google Scholar]
  • Reynolds CS. 2006. The ecology of phytoplankton. Cambridge University Press, Cambridge, pp. 1–535. [Google Scholar]
  • Reynolds CS, Huszar VL, Naselli-Flores L, Melo S. 2002. Towards a functional classification of the freshwater phytoplankton. J Plankton Res 24: 417–428. [CrossRef] [Google Scholar]
  • Rosén G. 1981. Phytoplankton indicators and their relations to certain chemical and physical factors. Limnologica 13: 2263–2290. [Google Scholar]
  • Salonen K, Rosenberg M. 2000. Advantages from diel vertical migration can explain the dominance of Gonyostomum semen (Raphidophyceae) in a small, steeply-stratified humic lake. J Plankton Res 22: 1841–1853. [CrossRef] [Google Scholar]
  • Salonen K, Jones RI, Arvola L. 1984. Hypolimnetic phosphorus retrieval by diel vertical migrations of lake phytoplankton. Freshwater Biol 14: 431–438. [CrossRef] [Google Scholar]
  • Sukenik A, Hadas O, Kaplan A, Quesada A. 2012. Invasion of Nostocales (cyanobacteria) to subtropical and temperate freshwater lakes − physiological, regional, and global driving forces. Front Microbiol 3: 86. [CrossRef] [PubMed] [Google Scholar]
  • Trigal C, Goedkoop W, Johnson RK. 2011. Changes in phytoplankton, benthic invertebrate and fish assemblages of boreal lakes following invasion by Gonyostomum semen. Freshwater Biol 56: 1937–1948. [CrossRef] [Google Scholar]
  • Van Boekel WHM, Hansen FC, Riegman R, Bak RPM. 1992. Lysis-induced decline of a Phaeocystis spring bloom and coupling with the microbial foodweb. Mar Ecol Prog Ser 81: 269–276. [CrossRef] [Google Scholar]
  • Vollenweider RA. 1969. A manual on methods for measuring primary production in aquatic environments. Blackwell, Oxford: Edinburgh, pp. 1–213. [Google Scholar]
  • Williamson CE, Sanders RW, Moeller RE, Stutzman PL. 1996. Utilization of subsurface food resources for zooplankton reproduction: implications for diel vertical migration theory. Limnol Oceanogr 41: 224–233. [CrossRef] [Google Scholar]