Open Access
Review
Issue
Manufacturing Rev.
Volume 5, 2018
Article Number 7
Number of page(s) 13
DOI https://doi.org/10.1051/mfreview/2018001
Published online 13 June 2018
  • M. Kok, Production and mechanical properties of Al2O3 particle-reinforced 2024 aluminium alloy composites, J. Mater. Process. Technol 161 (2005) 381–387 [CrossRef] [Google Scholar]
  • H.S. Lee, et al., The fabrication process and mechanical properties of SiCp/Al-Si metal matrix composites for automobile air-conditioner compressor pistons, J. Mater. Process. Technol. 113 (2001) 202–208 [CrossRef] [Google Scholar]
  • R. Zhang, L. Gao, J.K. Guo, Thermodynamic behaviour of copper-coated silicon carbide particles during conventional heating and spark plasma sintering, J. Am. Ceram. 86 (2003) 1446–1448 [CrossRef] [Google Scholar]
  • P. Rohatgi, R. Asthana, S. Das, Solidification, structures, and properties of cast metal-ceramic particle composites, Int. Met. Rev. 31 (1986) 115–139 [CrossRef] [Google Scholar]
  • G. Ramu, R. Bauri, Effect of equal channel angular pressing (ECAP) on microstructure and properties of Al-SiCp composites, Mater. Des. 30 (2009) 3554–3559 [CrossRef] [Google Scholar]
  • A.A. Mazen, A.Y. Ahmed, Mechanical behavior of Al-Al2O3 MMC manufactured by PM techniques part I—scheme I processing parameters, J. Mater. Eng. Perform. 7 (1998) 393–401 [CrossRef] [Google Scholar]
  • I.A. Ibrahim, F.A. Mohamed, E.J. Lavernia, Particulate reinforced metal matrix composites − a review, J. Mater. Sci. 26 (1991) 1137–1156 [CrossRef] [Google Scholar]
  • Y.B. Liu, et al., Recent development in the fabrication of metal matrix-particulate composites using powder metallurgy techniques, J. Mater. Sci. 29 (1994) 1999–2007 [CrossRef] [Google Scholar]
  • J.M. Torralba, C.E. da Costa, F. Velasco, P/M aluminum matrix composites: an overview, J. Mater. Process. Technol. 133 (2003) 203–206 [CrossRef] [Google Scholar]
  • J.W. Kaczmar, K. Pietrzak, W. Włosiński, The production and application of metal matrix composite materials, J. Mater. Process. Technol. 106 (2000) 58–67 [CrossRef] [Google Scholar]
  • S. Preetkanwal, Fabrication and machining of metal matrix composites: a review, Mater. Manuf. Process. 31 (2016) 553–573 [CrossRef] [Google Scholar]
  • A. Slipenyuk, et al., The effect of matrix to reinforcement particle size ratio (PSR) on the microstructure and mechanical properties of a P/M processed AlCuMn/SiCp MMC, Mater. Sci. Eng. A 381 (2004) 165–170 [CrossRef] [Google Scholar]
  • M. Schwartz, Composite materials: processing fabrication and applications, II, Prentice Hall PTR, 1997 [Google Scholar]
  • M. Rahimian, et al., The effect of particle size, sintering temperature and sintering time on the properties of Al-Al2O3 composites, made by powder metallurgy, J. Mater. Process. Technol. 209 (2009) 5387–5393 [CrossRef] [Google Scholar]
  • R.M. German, Powder metallurgy of iron and steel, Wiley, USA, 1998 [Google Scholar]
  • A.K. Bodukuri, et al., Fabrication of Al-SiC-B4C metal matrix composite by powder metallurgy technique and evaluating mechanical properties, Perspect. Sci. 8 (2016) 428–431 [CrossRef] [Google Scholar]
  • H.S. Chen, et al., Microstructure evolution and mechanical properties of B4C/6061Al neutron absorber composite sheets fabricated by powder metallurgy, J. Alloy. Compd. 730 (2018) 342–351 [CrossRef] [Google Scholar]
  • A. Feest, Metal powder report, (1992) 4045 [Google Scholar]
  • M. Vedani, E. Gariboldi, Damage and ductility of particulate and short-fibre Al Al2O3 composites, Acta Mater. 44 (1996) 3077–3088 [CrossRef] [Google Scholar]
  • J. Jiang, B. Dodd, Workability of aluminium-based metal-matrix composites in cold compression, Composites 26 (1995) 62–66 [CrossRef] [Google Scholar]
  • K. Asano, Properties of squeeze cast Al-bas composite materials strenthened with delta alumina fibers, Proceedings of 19th Congress of International Council for the Aeronautical Sciences, 2, 1994, 1814–1823 [Google Scholar]
  • A.U. Padmavathi, Densification, microstructure and properties of supersolidus liquid phase sintered 6711 Al-Sic metal matrix composites, Sci. Sinter. 42 (2010) 363–382 [CrossRef] [Google Scholar]
  • T.J.A. Doel, P. Bowen, Tensile properties of particulate-reinforced metal matrix composites, Compos. Part A: Appl. Sci. Manuf. 27 (1996) 655–665 [CrossRef] [Google Scholar]
  • B.Q. Han, K.C. Chan, Superplastic deformation mechanisms of particulate reinforced aluminium alloy matrix composites, Mater. Sci. Eng. 212 (1996) 256–264 [CrossRef] [Google Scholar]
  • P.K. Rohatgi, S. Ray, Y. Liu, Tribological properties of metal matrix-graphite particle composites, Int. Mater. Rev. 37 (1992) 129–152 [CrossRef] [Google Scholar]
  • H.J. Rack, Fabrication of high performance powder-metallurgy aluminum matrix composites, Adv. Mater. Manuf. Process. 3 (1988) 327–358 [Google Scholar]
  • A.D. Rosato, T. Vreeland, F.B. Prinz, Manufacture of powder compacts, Int. Mater. Rev. 36 (1991) 45–79 [CrossRef] [Google Scholar]
  • Z.R. Hesabi, A. Simchi, S.M.S. Reihani, Structural evolution during mechanical milling of nanometric and micrometric Al2O3 reinforced Al matrix composites, Mater. Sci. Eng. A 428 (2006) 159–168 [CrossRef] [Google Scholar]
  • R. Xu, et al., Balanced strength and ductility in CNT/Al composites achieved by flake powder metallurgy via shift-speed ball milling, Compos. Part A: Appl. Sci. Manuf. 96 (2017) 57–66 [CrossRef] [Google Scholar]
  • C. Suryanarayana, Mechanical alloying and milling, Prog. Mater. Sci. 46 (2001) 1–184 [CrossRef] [Google Scholar]
  • A. Esawi, K. Morsi, Dispersion of carbon nanotubes (CNTs) in aluminum powder, Compos. Part A: Appl. Sci. Manuf. 38 (2007) 646–650 [CrossRef] [Google Scholar]
  • A.M.K. Esawi, et al., Fabrication and properties of dispersed carbon nanotube-aluminum composites, Mater. Sci. Eng. A 508 (2009) 167–173 [CrossRef] [Google Scholar]
  • M. Rahimian, N. Parvin, N. Ehsani, The effect of production parameters on microstructure and wear resistance of powder metallurgy Al-Al2O3 composite, Mater. Des. 32 (2011) 1031–1038 [CrossRef] [Google Scholar]
  • A.K. Bodukuri, et al., Fabrication of Al-SiC-B4C metal matrix composite by powder metallurgy technique and evaluating mechanical properties, Perspect. Sci. 8 (2016) 428–431 [CrossRef] [Google Scholar]
  • S. Scudino, et al., Mechanical properties of Al-based metal matrix composites reinforced with Zr-based glassy particles produced by powder metallurgy, Acta Mater. 57 (2009) 2029–2039 [CrossRef] [Google Scholar]
  • M. Rahimian, et al., The effect of sintering temperature and the amount of reinforcement on the properties of Al-Al2O3 composite, Mater. Des. 30 (2009) 3333–3337 [CrossRef] [Google Scholar]
  • A.J. Albaaji, et al., Effect of ball-milling time on mechanical and magnetic properties of carbon nanotube reinforced FeCo alloy composites, Mater. Des. 122 (2017) 296–306 [CrossRef] [Google Scholar]
  • E.I. Salama, A. Abbas, A.M.K. Esawi, Preparation and properties of dual-matrix carbon nanotube-reinforced aluminum composites, Compos. Part A: Appl. Sci. Manuf. 99 (2017) 84–93 [CrossRef] [Google Scholar]
  • H. Wang, et al., Characterization of a powder metallurgy SiC/Cu-Al composite, J. Mater. Process. Technol. 197 (2008) 43–48 [CrossRef] [Google Scholar]
  • V.G. Karayannis, A.K. Moutsatsou, Fabrication of MMCs from metal and alloy powders produced from scrap, J. Mater. Process. Technol. 171 (2006) 295–300 [CrossRef] [Google Scholar]
  • M. Rosso, Ceramic and metal matrix composites: Routes and properties, J. Mater. Process. Technol. 175 (2006) 364–375 [CrossRef] [Google Scholar]
  • C.P. Samal, J.S. Parihar, D. Chaira, The effect of milling and sintering techniques on mechanical properties of Cu-graphite metal matrix composite prepared by powder metallurgy route, J. Alloy. Compd 569 (2013) 95–101 [CrossRef] [Google Scholar]
  • B. Venkatesh, Mechanical properties of metal matrix composites(Al/SiCp) particles produced by powder metallurgy, Int. J. Eng. Res. Gen. Sci. 3 (2015) [Google Scholar]
  • V. Jeevan et al., Compaction, sintering and mechanical properties of Al–SiCp composites, Int. J. Mech. Eng. Technol. 3 (2012) 565–573 [Google Scholar]
  • S. Azadehranjbar, F. Karimzadeh, M.H. Enayati, Development of NiFe-CNT and Ni3Fe-CNT nanocomposites by mechanical alloying, Adv. Powder Technol. 23 (2012) 338–342 [CrossRef] [Google Scholar]
  • H. Momeni, H. Razavi, S.G. Shabestari, Effect of supersolidus liquid phase sintering on the microstructure and densification of the Al-Cu-Mg prealloyed powder, Iran. J. Mater. Sci. Eng. 8 (2011) 10–17 [Google Scholar]
  • S.I. Andersen, H. Lilholt, O.B. Pedersen, Mechanical and physical behaviour of metallic and ceramic composites, Proceedings of the 9th Risø International Symposium on Metallurgy and Materials Science, 5–9 September, Risø National Laboratory, 1988 [Google Scholar]
  • D.J. Lloyd, H.P. Lagacé, A.D. Mcleod, Interfacial phenomena in metal matrix composites, in: H. Ishida (Ed.), Controlled Interphases in Composite Materials: Proceedings of the Third International Conference on Composite Interfaces (ICCI-III) held on May 21-24, Springer, Dordrecht, Netherlands 1990, pp. 359–376 [Google Scholar]
  • R.J. Arsenault, N. Shi, Dislocation generation due to differences between the coefficients of thermal expansion, Mater. Sci. Eng. 81 (1986) 175–187 [CrossRef] [Google Scholar]
  • M.Y. Wu, O.D. Sherby, Superplasticity in a silicon carbide whisker reinforced aluminum alloy, Scr. Metall. 18 (1984) 773–776 [CrossRef] [Google Scholar]
  • R. German, Sintering theory and practice, Wiley, New York, 1996 [Google Scholar]
  • M.A. Baghchesara, Microstructure and Mechanical Properties of Aluminium Alloy Matrix Composite Reinforced with Nano MgO Particles, Asian J. Chem. 22 (2010) 6769–6777 [Google Scholar]
  • K.H. Min, et al., Sintering characteristic of Al2O3-reinforced 2xxx series Al composite powders, J. Alloy. Compd. 400 (2005) 150–153 [CrossRef] [Google Scholar]
  • J.B. Fogagnolo, et al., The effects of mechanical alloying on the compressibility of aluminium matrix composite powder, Mater. Sci. Eng. A 355 (2003) 50–55 [CrossRef] [Google Scholar]
  • V.V. Dabhade, T.R.R. Mohan, P. Ramakrishnan, Sintering behavior of titanium-titanium nitride nanocomposite powders, J. Alloy. Compd 453 (2008) 215–221 [CrossRef] [Google Scholar]
  • H. Asgharzadeh, A. Simchi, Supersolidus liquid phase sintering of Al6061/SiC metal matrix composites, Powder Metall. 52 (2009) 28–35 [CrossRef] [Google Scholar]
  • N. Showaiter, M. Youseffi, Compaction, sintering and mechanical properties of elemental 6061 Al powder with and without sintering aids, Mater. Des. 29 (2008) 752–762 [CrossRef] [Google Scholar]
  • R. Yamanoglu, et al., Sintering and microstructure characteristics of 42CrMo4 steel processed by spark plasma sintering, Met. Mater. Int. 19 (2013) 1029–1034 [CrossRef] [Google Scholar]
  • R. Yamanoglu, W. Bradbury, E. Karakulak, E.A. Olevsky, R.M. German, Characterisation of nickel alloy powders processed by spark plasma sintering, Powder Metall (2014) [Google Scholar]
  • A. Teber, F. Schoenstein, F. Tetard, M. Abdellaoui, N. Jouini, Effect of SPS process sintering on the microstructure and mechanical properties of nanocrystalline TiC for tools application, J. Refract. Met. 30 (2012) 64–70 [CrossRef] [Google Scholar]
  • Y. Ridvan, E.A. Olevsky, Consolidation of Al-nanoSiC composites by spark plasma sintering, Int. J. Mater. Mech. Manuf. 4 (2016) [Google Scholar]
  • M. Suárez, A. Fernández, J.L. Menéndez, R. Torrecillas, H.U. Kessel, J. Hennicke, R. Kirchner, T. Kessel, Sintering applications, in: B. Ertu (Ed.), InTech, Croatia, 2013, pp. [Google Scholar]
  • R.M. German, Liquid phase sintering Plenum Press, New York, 1985, 4–5 p. [Google Scholar]
  • G.B. Schaffer, T.B. Sercombe, R.N. Lumley, Liquid phase sintering of aluminium alloys, Mater. Chem. Phys. 67 (2001) 85–91 [CrossRef] [Google Scholar]
  • K.E. Esterling, Phase Transformations in metals and alloys, McGraw-Hill, New York, 1980 [Google Scholar]
  • E. Saiz, A.P. Tomsia, K. Suganuma, Wetting and strength issues at Al/α-alumina interfaces, J. Eur. Ceram. Soc. 23 (2003) 2787–2796 [CrossRef] [Google Scholar]
  • G.E. Dieter, Mechanical metallurgy, 3rd edition, McGraw-Hill, 1976 [Google Scholar]
  • X. Zhang, M.J. Tan, Selection of particulate reinforcement in P/M metal matrix composites, J. Mater. Process. Technol. 63 (1997) 913–917 [CrossRef] [Google Scholar]
  • K.K.C. Nikhilesh Chawla, Metal matrix composites, Springer, New York, 2006, 88 p [Google Scholar]
  • P. Tsakiropoulous, Mater. Sci. Eng. A 189 (1994) 285 [CrossRef] [Google Scholar]
  • Z.W.H. Chao SunMin Song, Effect of particle size on the microstructures and mechanical properties of SiC-reinforced pure aluminum composites, J. Mater. Eng. Perform. 20 (2011) 1606–1612 [CrossRef] [Google Scholar]
  • N. Chawla, J.J. Williams, R. Saha, Mechanical behavior and microstructure characterization of sinter-forged SiC particle reinforced aluminum matrix composites, J. Light Met. 2 (2002) 215–227 [CrossRef] [Google Scholar]
  • A.V. Muley, S. Aravindan, I.P. Singh, Nano and hybrid aluminum based metal matrix composites: an overview, Manuf. Rev. 2 (2015) 15 [Google Scholar]
  • A.E. Nassar, E.E. Nassar, Properties of aluminum matrix Nano composites prepared by powder metallurgy processing, J. King Saud Univ. − Eng. Sci. 29 (2017) 295–299 [Google Scholar]
  • A.V. Muley, S. Aravindan, I.P. Singh, Mechanical and tribological studies on nano particles reinforced hybrid aluminum based composite, Manuf. Rev. 2 (2015) 26 [Google Scholar]