Open Access
Issue
Manufacturing Rev.
Volume 6, 2019
Article Number 21
Number of page(s) 13
DOI https://doi.org/10.1051/mfreview/2019020
Published online 09 September 2019
  • S. Kou, Y. Le, Nucleation mechanism and grain refining of weld metal, Welding J. 65 (1986) 63–70 [Google Scholar]
  • M.J. Jose, S.S. Kumar, A. Sharma, Vibration assisted welding processes and their influence on quality of welds, Sci. Technol. Weld. Join. 22 (2015) 243–258 [Google Scholar]
  • Q. Lu, L. Chen, C. Ni, Improving welded valve quality by vibratory weld conditioning, Mater. Sci. Eng. A 457 (2007) 246–253 [CrossRef] [Google Scholar]
  • L. Qinghua, C. Ligong, N. Chunzhen, Effect of vibratory weld conditioning on welded valve properties. Mech. Mater 40 (2008) 565–574 [CrossRef] [Google Scholar]
  • C.-C. Hsieh, C.-H. Lai, W. Wu, Effect of vibration on microstructure and mechanical properties of 304 Stainless steel GTA welds, Met. Mater. Int. 19 (2013) 835–844. [CrossRef] [Google Scholar]
  • M. Malinowaski-Brodnicka, G. Den, W.J. Wink, Effect of magnetic fields on GTA welds in austenitic stainless steel, Weld. Res. Suppl. 52-s (1990) 52–59 [Google Scholar]
  • C. Vives, Effect of electromagnetic vibration on the microstructure of continuously cast alloys, Mater. Sci. Eng. A 173 (1993) 169–172 [CrossRef] [Google Scholar]
  • W. Wu, Influence of vibration frequency on solidification of weldments, Scr. Matter 42 (2000) 661–665 [CrossRef] [Google Scholar]
  • A.S.M.Y. Munsi, A.J. Waddell, C.A. Walker, The effect of vibratory stress on the welding microstructure and residual stress distribution, J. Mater. Des. Appl. 215 (2001) 99–111 [Google Scholar]
  • M. Sun, Y. Sun, R. Wang, Vibratory stress relieving of welded sheet steels of low alloy high strength steel, Mater. Lett. 58 (2004) 1396–1399 [CrossRef] [Google Scholar]
  • D. Rao, D. Wang, L. Chen, The effectiveness evaluation of 314L stainless steel vibratory stress relief by dynamic stress, Int. J. Fatig. 29 (2007) 192–196 [CrossRef] [Google Scholar]
  • X. Jijin, C. Ligong, N. Chunzhen, Effect of vibratory welds conditioning on residual stress and distortion in the multipass girth butt welded pipes, Int. J. Press. Vessel Pip. 84 (2007) 298–303 [CrossRef] [Google Scholar]
  • Y. Cui, C.L. X, Effect of ultrasonic vibration on unmixed zone formation. Scr. Mater 55 (2006) 957–958 [Google Scholar]
  • B. Pucko, V. Gliha, Charpy toughness of vibrated microstructure. Original scientific paper-Izvorni Znanstveni Rad, Metalurgija 44 (2005) 103–106 [Google Scholar]
  • Y. Lei, Z. Wang, X. Chen, Effect of ultrasound on microstructures and mechanical properties of plasma arc welded joints of SiCp/Al MMCs, Trans. Nonferrous Metals Soc. China 21 (2011) 272–277 [CrossRef] [Google Scholar]
  • R. Dehmolaei, M. Shamanian, A. Kermanpur, Effect of electromagnetic vibration on the unmixed zone formation in 25 Cr- 35Ni heat resistant steel/Alloy 800 dissimilar welds, Mater. Charac. 59 (2008) 1814–1817 [CrossRef] [Google Scholar]
  • K. Balasubramanian, V. Balusamykeshavan, Studies on the effect of vibration on hot cracking and grain size in AA7075 Aluminum alloy welding, Int. J. Eng. Sci. Technol. 3 (2011) 1 [Google Scholar]
  • P. Govind Rao, P. Srinivasa Rao, A. Gopala Krishna, Mechanical properties improvement of weldments using vibratory welding system. Inst. Mech. Eng. – J. Eng. Manuf. B 229 (2014) 776–784 [Google Scholar]
  • A. Krajewski, W. Włosiński, T. Chmielewski, P. Kołodziejczak, Ultrasonic vibration assisted arc-welding of aluminum alloys. Bull. Polish Acad. Sci. Tech. Sci. 4 (2012) 841–852 [Google Scholar]
  • J.S. Wang, C. Hsieh, C.M. Lin, E.C. Chen, C.W. Kuo, W. Wu, The effect of residual stress relaxation of the vibratory stress relief technique on the textures of grains in AA 6061 Aluminum alloy, Mater. Sci. Eng. A 605 (2014) 98–107 [CrossRef] [Google Scholar]
  • A. Mostafapour, V. Gholizadeh, Experimental investigation of the effect of vibration on mechanical properties of 304 stainless steel welded parts, Int. J. Adv. Manuf. Technol. 70 (2014) 1113–1124 [CrossRef] [Google Scholar]
  • S. Amini, M. Amiri, Study of ultrasonic vibration's effect on friction stir welding, Int. J. Adv. Manufact. Technol. 73 (2014) 127–135 [CrossRef] [Google Scholar]
  • C. Hsieh, P. Wang, J. Wang, W. Wu, Evolution of Microstructure and residual stress under various vibration modes in 304 Stainless steel welds, Sci. World J. (2014) DOI: 10.1155/2014/895790 [Google Scholar]
  • T. Wen, S.Y. Liu, S. Che, L. Liu, C. Yang, Influence of high frequency vibration on microstructure and mechanical properties of TIG welding joints of AZ31 magnesium alloy, Trans. Nonferrous Metals Soc. China 25 (2015) 397–404 [CrossRef] [Google Scholar]
  • J. Wang, Q. Sun, L. Wu et al., Effect of ultrasonic vibration on microstructural evolution and mechanical properties of underwater wet welding joint, J. Mater. Process. Technol. 246 (2017) 185–197 [CrossRef] [Google Scholar]
  • Y. Ye, X. Li, J. Kuang, Y. Geng, G. Tang, Effects of electropulsing assisted ultrasonic impact treatment on welded components, Mater. Sci. Technol. 31 (2015) 1583–1588 [CrossRef] [Google Scholar]
  • M. Rahmi, M. Abbasi, Friction stir vibration welding process: modified version of friction stir welding process, Int. J. Adv. Manufact. Technol. (2016) DOI: 10.1007/s00170-016-9383-9 [Google Scholar]
  • S.P. Tiwari, A. Shanker, Effect of longitudinal vibration on mechanical properties of mild steel weldments. Proc. Inst Mech. Eng. B: J. Eng. Manuf. 207 (1993) 173–177 [CrossRef] [Google Scholar]
  • S. Kumar, C.S. Wu, G.K. Padhy, W. Ding, Application of ultrasonic vibrations in welding and metal processing: a status review, J. Manufact. Process. 26 (2017) 295–322 [CrossRef] [Google Scholar]
  • P.K. Singh, D. Patel, S.B. Prasad, Investigation on the effect of auxiliary vibrations on microstructure and mechanical properties of SMAW butt welded joints, Indian J. Eng. Mater. Sci. NISCAIR 25 (2018) 155–162 [Google Scholar]
  • L. Shi, C. Wui, X. Liu, Modeling the effects of ultrasonic vibration on friction stir welding, J. Mater. Process. Technol. 36 (2015) 25–262 [Google Scholar]
  • S. Rajakumar, C. Muralidharan, V. Balasubramanian, Optimization of the friction-stir-welding process and tool parameters to attain a maximum tensile strength of AA7075-T6 aluminum alloy, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 224 (2010) 1175–1191. [CrossRef] [Google Scholar]
  • P. Bamankar, S. Sawant, Study of the effect of process parameters on depth of penetration and bead width in SAW process, Int. J. Adv. Eng. Res. Stud. 2 (2013) 8–10 [Google Scholar]
  • Y.H.P. Manurung, M.A. Mohamed, A.Z. Abidin, Structural life enhancement on friction stir welded AA6061 with optimized process and HFMI/PIT parameters, Int. J. Adv. Manufact. Technol. (2016) DOI: 10.1007/s00170-016-9697-7 [Google Scholar]
  • S. Kumar, A.S. Shahi, Effect of heat input on the microstructure and the mechanical properties of gas tungsten arc welded AISI 304 stainless steel joints, Mater. Des. 32 (2011) 3617–3623 [CrossRef] [Google Scholar]
  • S. Mahajan, N.S. Biradar, R. Raman, S. Mishra, Effect of mechanical arc oscillation on the grain structure of mild steel weld metal, Trans. Indian Inst. Metals 65 (2012) 171–177 [CrossRef] [Google Scholar]
  • Rahul, H.K. Arya, R.K. Saxena, Effect of cooling rate on microstructure of SAW welded mild steel plate (grade C 25 as per IS 1570), Int. J. Mod. Eng. Res. 4 (2014) 222 [Google Scholar]
  • P. Singh, D. Patel, S.B. Prasad, Investigation on the effect of vibrations on cooling behavior and mechanical properties of SMAW butt welded joints, Sci. Bull. Ser. D (2017) 79. [Google Scholar]
  • S. Fouladi, M. Abbasi, The effect of friction stir vibration welding process on characteristics of SiO2 incorporated joint, J. Mater. Process. Technol. 243 (2017) 23–30 [CrossRef] [Google Scholar]
  • F. Lefebvre, C. Peyrac, G. Elbel, HFMI: understanding the mechanisms for fatigue life improvement and repair of welded structures, Weld World (2017) DOI: 10.1007/s40194-017-0455-8 [Google Scholar]
  • A.K. Pathak, G.L. Dutta, Three-dimensional finite element analysis to predict the different zones of microstructure in submerged arc welding, Proc. Inst. Mech. Eng. J. Eng. Manuf. B 218 (2003) 269–280 [CrossRef] [Google Scholar]
  • C. Shanjeevi, S. Satish Kumar, P. Sathiya, Multi-objective optimization of friction welding parameters in AISI 304L austenitic stainless steel and copper joints, Proc. Inst. Mech. Eng. J. Eng. Manuf. B 230 (2016) 449–457 [CrossRef] [Google Scholar]
  • P. Mondal, D. Bose, M. Tech, Optimization of the process parameters for mig welding of aisi 304 and is 1079 using fuzzy logic method, Int. Res. J. Eng. Technol. 2 (2015) 483–488 [Google Scholar]
  • P.K. Singh, D. Patel, S.B. Prasad, Development of vibratory welding technique and tensile properties investigation of Shielded metal arc welded joints, Indian J. Sci. Technol. 9 (2016) DOI: 10.17485/ijst/2016/v9i35/92846 [Google Scholar]
  • K.N.H. Yamamoto, S. Harada et al., Beneficial effects of low frequency pulsed MIG welding on grain refinement of weld metal and improvement of solidification cracking susceptibility of aluminum alloys, Weld. Int. 7 (1993) 456–461 [CrossRef] [Google Scholar]
  • X. Liang, Y. Wan, C. Zhang, B. Zhang, X. Meng, Comprehensive evaluation of welding quality for butt-welded by means of CO2 arc vibratory welding, Int. J. Adv. Manufact. Technol. 90 (2016) 1911–1920. [CrossRef] [Google Scholar]
  • Y.B. Zhong, C.S. Wu, G.K. Padhy, Effect of ultrasonic vibration on welding load, temperature and material flow in friction stir welding, J. Mater. Process. Technol. 239 (2017) 273–283 [CrossRef] [Google Scholar]
  • P. Kumar Singh, S. Deepak Kumar, D. Patel, S.B. Prasad, Optimization of vibratory welding process parameters using response surface methodology, J. Mech. Sci. Technol. 31 (2017) 2487–2495 [CrossRef] [Google Scholar]