Open Access
Review
Issue
Manufacturing Rev.
Volume 6, 2019
Article Number 25
Number of page(s) 20
DOI https://doi.org/10.1051/mfreview/2019023
Published online 07 November 2019
  • E. Irissou, J.-G. Legoux, A.N. Ryabinin, B. Jodoin, C. Moreau, Review on cold spraying processes and technology: Part I − Intellectual property, J. Therm. Spray Technol. 17 (2008) 495–516 [CrossRef] [Google Scholar]
  • R.N. Raoelison, Y. Xie, T. Sapanathan, M.P. Planche, R. Kromer, S. Costil et al., Cold gas dynamic spray technology: a comprehensive review of processing conditions for various technological developments till to date, Addit. Manuf. 19 (2018) 134–159 [CrossRef] [Google Scholar]
  • H. Singh, T.S. Sidhu, S.B.S. Kalsi, Cold spraying technology: future of coating deposition processes, Frat. Ed. Integrita Strutt. 22 (2012) 69–84 [CrossRef] [Google Scholar]
  • D.K. Christoulis, M. Jeandin, E. Irissou, J. Legoux, W. Knapp, Laser-Assisted Cold spraying (LACS) (2012) DOI: 10.5772/36104 [Google Scholar]
  • A. Moridi, S.M. Hassani-Gangaraj, M. Guagliano, M. Dao, Cold spraying coating: review of material systems and future perspectives, Surf. Eng. 30 (2014) 369–395 [CrossRef] [Google Scholar]
  • T. Marrocco, D.G. McCartney, P.H. Shipway, A.J. Sturgeon, Production of titanium deposits by cold-gas dynamic spray: numerical modeling and experimental characterization, J. Therm. Spray Technol. 15 (2006) 263–272 [CrossRef] [Google Scholar]
  • D. MacDonald, R. Fernández, F. Delloro, B. Jodoin, Cold spraying of armstrong process titanium powder for additive manufacturing, J. Therm. Spray Technol. 26 (2017) 598–609 [CrossRef] [Google Scholar]
  • T.H.V. Steenkiste, J.R. Smith, R.E. Teets, Aluminum coatings via kinetic spray with relatively large powder particles, Surf. Coatings Technol. 154 (2002) 237–252 [CrossRef] [Google Scholar]
  • M. Grujicic, C.L. Zhao, C. Tong, W.S. DeRosset, D. Helfritch, Analysis of the impact velocity of powder particles in the cold-gas dynamic-spraying processes, Mater. Sci. Eng. A 368 (2004) 222–230 [CrossRef] [Google Scholar]
  • H. Assadi, F. Gartner, T. Stoltenhoff, H. Kreye, Bonding mechanism in cold gas spraying, Acta Mater. 6454 (2003) 4379–4394 [CrossRef] [Google Scholar]
  • R. Lupoi, W. O'Neill, Powder stream characteristics in cold spraying nozzles, Surf. Coatings Technol. 206 (2011) 1069–1076 [CrossRef] [Google Scholar]
  • R. Lupoi, W. O'Neill, Deposition of metallic coatings on polymer surfaces using cold spraying, Surf. Coatings Technol. 205 (2010) 2167–2173 [CrossRef] [Google Scholar]
  • J. Villafuerte, Current and future applications of cold spraying technology, Met. Finish. 108 (2010) 37–39 [CrossRef] [Google Scholar]
  • W.J. Marple, The Cold Gas-Dynamic Spray and Characterization of Microcrystalline and Nanocrystalline Copper Alloys. United States Naval Academy, Naval Postgraduate School, 2012 [Google Scholar]
  • J.R. Davis, Handbook of thermal spray technology, ASM International, Materials Park, OH, USA, 2004 [Google Scholar]
  • F.J. Hermanek, Thermal spray terminology and company origins, 1st edn. ASM International, Materials Park, OH, USA, 2001 [Google Scholar]
  • R. Ghelichi, M. Guagliano, Coating by the Cold spraying processes: a state of the art. Frat Ed Integrità Strutt Ed Integrità Strutt 3 (2009) 30–44 [CrossRef] [Google Scholar]
  • S.E. Tinashe, Conceptual Design of a Low Pressure Cold Gas Dynamic Spray (LPCGDS) System, University of the Witwatersrand (2010) [Google Scholar]
  • H. Singh, T.S. Sidhu, S.B.S. Kalsi, J. Karthikeyan, Development of cold spraying from innovation to emerging future coating technology, J. Br. Soc. Mech. Sci. Eng. 35 (2013) 231–245 [CrossRef] [Google Scholar]
  • S. Yin, P. Cavaliere, B. Aldwell, R. Jenkins, H. Liao, W. Li et al., Cold spraying additive manufacturing and repair: fundamentals and applications, Addit. Manuf. 21 (2018) 628–650 [CrossRef] [Google Scholar]
  • D.G. McCartney, H. Tabbara, S. Gu, P.H. Shipway, T.S. Price, Study on process optimization of cold gas spraying, J. Therm. Spray Technol. 20 (2010) 608–620 [Google Scholar]
  • Y.K. Han, N. Birbilis, K. Spencer, M. Zhang, B.C. Muddle, Investigation of Cu coatings deposited by kinetic metallization, Mater. Charact. 61 (2010) 1167–1186 [CrossRef] [Google Scholar]
  • F. Robitaille, M. Yandouzi, S. Hind, B. Jodoin, Metallic coating of aerospace carbon/epoxy composites by the pulsed gas dynamic spraying process, Surf. Coatings Technol. 203 (2009) 2954–2960 [CrossRef] [Google Scholar]
  • M. Yandouzi, P. Richer, B. Jodoin, SiC particulate reinforced Al − 12Si alloy composite coatings produced by the pulsed gas dynamic spraying processes: microstructure and properties, Surf. Coat. Technol. 203 (2009) 3260–3270 [CrossRef] [Google Scholar]
  • M. Yandouzi, H. Bu, M. Brochu, B. Jodoin, Nanostructured Al-based metal matrix composite coating production by pulsed gas dynamic spraying process, J. Therm. Spray Technol. 21 (2012) 609–619 [CrossRef] [Google Scholar]
  • M. Winnicki, A. Ma, G. Dudzik, M. Rutkowska-gorczyca, M. Marciniak, K. Abramski, Numerical and experimental analysis of copper particles velocity in low-pressure cold spraying process, Surf. Coat. Technol. 268 (2015) 230–240 [CrossRef] [Google Scholar]
  • D. Hanft, P. Glosse, S. Denneler, T. Berthold, M. Oomen, S.K. Id et al., The aerosol deposition method: a modified aerosol generation unit to improve coating quality. Material (Basel) 11 (2018) 1–11 [Google Scholar]
  • H. Ashizawa, M. Kiyohara, Plasma exposure behavior of yttrium oxide film formed by aerosol deposition method, IEEE Trans. Semicond. Manuf. 30 (2017) 357–361 [CrossRef] [Google Scholar]
  • A. Concustell, J. Henao, S. Dosta, N. Cinca, I.G. Cano, J.M. Guilemany, On the formation of metallic glass coatings by means of Cold Gas Spray technology, J. Alloys Compd. 651 (2015) 764–772 [CrossRef] [Google Scholar]
  • D.P. Eason, A structure property processing comparison of cold rolled PM copper and cold gas dynamically sprayed copper, J. Powder Metall. Min. 01 (2012) 1–5 [CrossRef] [Google Scholar]
  • M.R. Rokni, C.A. Widener, G.A. Crawford, M.K. West, An investigation into microstructure and mechanical properties of cold sprayed 7075 Al deposition, Mater. Sci. Eng. A 625 (2015) 19–27 [CrossRef] [Google Scholar]
  • Y. Zou, W. Qin, E. Irissou, J.-G. Legoux, S. Yue, J.A. Szpunar, Dynamic recrystallization in the particle/particle interfacial region of cold-sprayed nickel coating: electron backscatter diffraction characterization, Scr. Mater. 61 (2009) 899–902 [CrossRef] [Google Scholar]
  • D. Rafaja, T. Schucknecht, V. Klemm, A. Paul, H. Berek, Microstructural characterisation of titanium coatings deposited using cold gas spraying on Al2O3 substrates, Surf. Coatings Technol. 203 (2009) 3206–3213 [CrossRef] [Google Scholar]
  • M.R. Rokni, C.A. Widener, G.A. Crawford, M.K. West, An investigation into microstructure and mechanical properties of cold sprayed 7075 Al deposition, Mater. Sci. Eng. A 625 (2015) 19–27 [CrossRef] [Google Scholar]
  • D. Giraud, Étude des composantes mécanique et métallurgique dans la liaison revêtement-substrat obtenue par projection dynamique par gaz froid pour les systèmes “Aluminium / Polyamide6, 6” et “Titane / TA6V” To cite this version: HAL Id: pastel-01073679 l ' É 2014 [Google Scholar]
  • M. Grujicic, J.R. Saylor, D.E. Beasley, W.S. DeRosset, D. Helfritch, Computational analysis of the interfacial bonding between feed-powder particles and the substrate in the cold-gas dynamic-spraying processes, Appl. Surf. Sci. 219 (2003) 211–227 [CrossRef] [Google Scholar]
  • X.L. Zhou, A.F. Chen, J.C. Liu, X.K. Wu, J.S. Zhang, Preparation of metallic coatings on polymer matrix composites by cold spraying, Surf. Coatings Technol. 206 (2011) 132–136 [CrossRef] [Google Scholar]
  • V.K. Champagne, D. Helfritch, P. Leyman, S. Grendahl, B. Klotz, Interface material mixing formed by the deposition of copper on aluminum by means of the cold spraying processes, J. Therm. Spray Technol. 14 (2005) 330–334 [CrossRef] [Google Scholar]
  • K.H. Ko, J.O. Choi, H. Lee, Intermixing and interfacial morphology of cold-sprayed Al coatings on steel, Mater. Lett. 136 (2014) 45–47 [CrossRef] [Google Scholar]
  • A. Ganesan, M. Yamada, M. Fukumoto, Cold spraying coating deposition mechanism on the thermoplastic and thermosetting polymer substrates, J. Therm. Spray Technol. 22 (2013) 1275–1282 [CrossRef] [Google Scholar]
  • D. Seo, M. Sayar, K. Ogawa, SiO2 and MoSi2 formation on Inconel 625 surface via SiC coating deposited by cold spraying, Surf. Coatings Technol. 206 (2012) 2851–2858 [CrossRef] [Google Scholar]
  • T. Hussain, D.G. McCartney, P.H. Shipway, Bonding between aluminium and copper in cold spraying: story of asymmetry, Mater. Sci. Technol. 28 (2012) 1371–1378 [CrossRef] [Google Scholar]
  • D.-Y. Kim, J.-J. Park, J.-G. Lee, D. Kim, S.J. Tark, S. Ahn et al., Cold spraying deposition of copper electrodes on silicon and glass substrates, J. Therm. Spray Technol. 22 (2013) 1092–1102 [CrossRef] [Google Scholar]
  • H.Y. Lee, Y.H. Yu, Y.C. Lee, Y.P. Hong, K.H. Ko, Interfacial studies between cold-sprayed WO3, Y2O3 films and Si substrate, Appl. Surf. Sci. 227 (2004) 244–249 [CrossRef] [Google Scholar]
  • I. Burlacov, J. Jirkovský, L. Kavan, R. Ballhorn, R.B. Heimann, Cold gas dynamic spraying (CGDS) of TiO2 (anatase) powders onto poly(sulfone) substrates: microstructural characterisation and photocatalytic efficiency, J. Photochem. Photobiol. A: Chem. 187 (2007) 285–292 [CrossRef] [Google Scholar]
  • A. Ganesan, J. Affi, M. Yamada, M. Fukumoto, Bonding behavior studies of cold sprayed copper coating on the PVC polymer substrate, Surf. Coatings Technol. 207 (2012) 262–269 [CrossRef] [Google Scholar]
  • D. Zhang, P.H. Shipway, D.G. McCartney, Cold gas dynamic spraying of aluminum: the role of substrate characteristics in deposit formation, J. Therm. Spray Technol. 14 (2005) 109–116 [CrossRef] [Google Scholar]
  • P.C. King, S. Zahiri, M. Jahedi, J. Friend, Aluminium coating of lead zirconate titanate—a study of cold spraying variables, Surf. Coatings Technol. 205 (2010) 2016–2222 [CrossRef] [Google Scholar]
  • P.C. King, A.J. Poole, S. Horne, R. de Nys, S. Gulizia, M.Z. Jahedi, Embedment of copper particles into polymers by cold spraying, Surf. Coatings Technol. 216 (2013) 60–67 [CrossRef] [Google Scholar]
  • A.S. Alhulaifi, G.A. Buck, W.J. Arbegast, Numerical and experimental investigation of cold spraying gas dynamic effects for polymer coating, J. Therm. Spray Technol. 21 (2012) 852–862 [CrossRef] [Google Scholar]
  • Y. Xu, I.M. Hutchings, Cold spraying deposition of thermoplastic powder, Surf. Coatings Technol. 201 (2006) 3044–3050 [CrossRef] [Google Scholar]
  • L. Zhu, T.-C. Jen, Y.-T. Pan, H.-S. Chen, Particle bonding mechanism in cold gas dynamic spray: a three-dimensional approach, J. Therm. Spray Technol. 26 (2017) 1859–1873 [CrossRef] [Google Scholar]
  • Y. Kim, S. Yang, J.-W. Lee, J.-O. Choi, S.-H. Ahn, C.S. Lee, Photovoltaic characteristics of a Dye-Sensitized Solar Cell (DSSC) fabricated by a Nano-Particle Deposition System (NPDS), Mater. Trans. 54 (2013) 2064–2068 [CrossRef] [Google Scholar]
  • D.-M. Chun, S.-H. Ahn, Deposition mechanism of dry sprayed ceramic particles at room temperature using a nano-particle deposition system, Acta Mater. 59 (2011) 2693–2703 [CrossRef] [Google Scholar]
  • H.Y. Lee, Y.H. Yu, Y.C. Lee, Y.P. Hong, K.H. Ko, Thin film coatings of WO3 by cold gas dynamic spray: a technical note, J. Therm. Spray Technol. 14 (2005) 183–186 [CrossRef] [Google Scholar]
  • S.-Q. Fan, C.-J. Li, G.-J. Yang, L.-Z. Zhang, J.-C. Gao, Y.-X. Xi, Fabrication of nano-TiO2 coating for dye-sensitized solar cell by vacuum cold spraying at room temperature, J. Therm. Spray Technol. 16 (2007) 893–897 [CrossRef] [Google Scholar]
  • M. Yamada, H. Isago, H. Nakano, M. Fukumoto, Cold spraying of TiO2 photocatalyst coating with nitrogen process gas, J. Therm. Spray Technol. 19 (2010) 1218–1223 [CrossRef] [Google Scholar]
  • S.-Q. Fan, G.-J. Yang, C.-J. Li, G.-J. Liu, C.-X. Li, L.-Z. Zhang, Characterization of microstructure of Nano-TiO2 coating deposited by vacuum cold spraying, J. Therm. Spray Technol. 15 (2006) 513–517 [CrossRef] [Google Scholar]
  • R.N. Raoelison, C. Verdy, H. Liao, Cold gas dynamic spray additive manufacturing today: Deposit possibilities, technological solutions and viable applications, Mater. Des. 133 (2017) 266–287 [CrossRef] [Google Scholar]
  • H. Assadi, T. Schmidt, H. Richter, J.-O. Kliemann, K. Binder, F. Gärtner et al., On parameter selection in cold spraying, J. Therm. Spray Technol. 20 (2011) 1161–1176 [CrossRef] [Google Scholar]
  • M. Fukumoto, H. Terada, M. Mashiko, K. Sato, M. Yamada, E. Yamaguchi, Deposition of copper fine particle by cold spraying processes, Mater. Trans. 50 (2009) 1482–1488 [CrossRef] [Google Scholar]
  • G.-J. Yang, C.-J. Li, S.-Q. Fan, Y.-Y. Wang, C.-X. Li, Influence of annealing on photocatalytic performance and adhesion of vacuum cold-sprayed nanostructured TiO2 coating, J. Therm. Spray Technol. 16 (2007) 873–880 [CrossRef] [Google Scholar]
  • Y.-Y. Wang, L. Yi, C.-X. Li, G.-J. Yang, Y. Liu, C.-J. Li et al., Electrical and mechanical properties of nano-structured TiN coatings deposited by vacuum cold spraying coating microstructure control view project the cracking mechanism of thermally sprayed coatings view project electrical and mechanical properties of nano-, Vaccum 86 (2012) 953–959 [CrossRef] [Google Scholar]
  • D.-M. Chun, C.-S. Kim, J.-O. Choi, G.-Y. Lee, C.S. Lee, S.-H. Ahn, Multilayer deposition of ceramic and metal at room temperature using nanoparticle deposition system (NPDS) and planarization process, Int. J. Adv. Manuf. Technol. 72 (2014) 41–46 [CrossRef] [Google Scholar]
  • D.M. Chun, M.H. Kim, J.C. Lee, S.H. Ahn, TiO2 coating on metal and polymer substrates by nano-particle deposition system (NPDS), CIRP Ann. 57 (2008) 551–554 [CrossRef] [Google Scholar]
  • D.-M. Chun, J.-O. Choi, C.S. Lee, I. Kanno, H. Kotera, S.-H. Ahn, Nano-particle deposition system (NPDS): low energy solvent-free dry spraying processes for direct patterning of metals and ceramics at room temperature, Int. J. Precis. Eng. Manuf. 13 (2012) 1107–1112 [CrossRef] [Google Scholar]
  • S.-Q. Fan, C.-J. Li, G.-J. Yang, L.-Z. Zhang, J.-C. Gao, Y.-X. Xi, Fabrication of nano-TiO 2 coating for dye-sensitized solar cell by vacuum cold spraying at room temperature, J. Therm. Spray Technol. 16 (2007) 892–897 [Google Scholar]
  • R. Kromer, R.N. Raoelison, C. Langlade, Y. Xie, M.P. Planche, T. Sapanathan et al., Cold gas dynamic spray technology: a comprehensive review of processing conditions for various technological developments till to date, Addit. Manuf. 19 (2017) 134–159 [Google Scholar]
  • J. Karthikeyan, Cold spraying Technology: International Status and USA Efforts (2004) 1–14 [Google Scholar]
  • C.-J. Li, H.-T. Wang, Q. Zhang, G.-J. Yang, W.-Y. Li, H.L. Liao, Influence of spray materials and their surface oxidation on the critical velocity in cold spraying, J. Therm. Spray Technol. 19 (2010) 95–101 [CrossRef] [Google Scholar]
  • C.-J. Li, W.-Y. Li, Deposition characteristics of titanium coating in cold spraying, Surf. Coatings Technol. 167 (2003) 278–283 [CrossRef] [Google Scholar]
  • C.-J. Li, W.-Y. Li, Y.-Y. Wang, G.-J. Yang, H. Fukanuma, A theoretical model for prediction of deposition efficiency in cold spraying, Thin Solid Films 489 (2005) 79–85 [CrossRef] [Google Scholar]
  • C.-J. Li, W.-Y. Li, H. Liao, Examination of the critical velocity for deposition of particles in cold spraying, J. Therm. Spray Technol. 15 (2006) 212–222 [CrossRef] [Google Scholar]
  • J.-G. Legoux, E. Irissou, S. Desaulniers, J. Bobyn, B. Harvey, W. Wong, E. Gagnon, S. Yue, Characterization and performance evaluation of a helium recovery system designed for cold spraying, NRC Publ Arch (NPArC) 2010, 1–22 [Google Scholar]
  • C.J. Sutcliffe, A. Papworth, C. Gallagher, P. Fox, R.H. Morgan, W. O'Neill et al., Cold gas dynamic manufacturing − a new approach to near-net shape metal component fabrication, Mater. Res. Soc. Proc. 758 (2003) 73–84 [Google Scholar]
  • W. Wong, E. Irissou, A.N. Ryabinin, J. Legoux, S. Yue, Influence of helium and nitrogen gases on the properties of cold gas dynamic sprayed pure titanium coatings, J. Therm. Spray Technol. 20 (2011) 213–226 [CrossRef] [Google Scholar]
  • S. Yin, X. Suo, H. Liao, Z. Guo, X. Wang, Significant influence of carrier gas temperature during the cold spraying processes, Surf. Eng. 30 (2014) 443–450 [CrossRef] [Google Scholar]
  • S. Yin, Q. Liu, H. Liao, X. Wang, Effect of injection pressure on particle acceleration, dispersion and deposition in cold spraying, Comput. Mater. Sci. 90 (2014) 7–15 [CrossRef] [Google Scholar]
  • S. Yin, Y. Xie, X. Suo, H. Liao, X. Wang, Interfacial bonding features of Ni coating on Al substrate with different surface pretreatments in cold spraying, Mater. Lett. 138 (2015) 143–147 [CrossRef] [Google Scholar]
  • T. Hussain, D.G. McCartney, P.H. Shipway, Impact phenomena in cold-spraying of titanium onto various ferrous alloys, Surf. Coatings Technol. 205 (2011) 5021–5027 [CrossRef] [Google Scholar]
  • J. Wu, J. Yang, H. Fang, S. Yoon, C. Lee, The bond strength of Al-Si coating on mild steel by kinetic spraying deposition, Appl. Surf. Sci. 252 (2006) 7809–7814 [CrossRef] [Google Scholar]
  • P. Richer, B. Jodoin, L. Ajdelsztajn, E.J. Lavernia, Substrate roughness and thickness effects on cold spraying nanocrystalline Al-Mg coatings, J. Therm. Spray Technol. 15 (2006) 246–254 [CrossRef] [Google Scholar]
  • C.R. May, C. May, S. Marx, A. Paul, Cold spraying coatings on hard surfaces other commercial applications, n.d. [Google Scholar]
  • K.-R. Ernst, J. Braeutigam, F. Gaertner, T. Klassen, Effect of substrate temperature on cold-gas-sprayed coatings on ceramic substrates, J. Therm. Spray Technol. 22 (2013) 422–432 [CrossRef] [Google Scholar]
  • R. Kromer, S. Costil, J. Cormier, L. Berthe, P. Peyre, D. Courapied, Laser patterning pretreatment before thermal spraying: a technique to adapt and control the surface topography to thermomechanical loading and materials, J. Therm. Spray Technol. 25 (2016) 401–410 [CrossRef] [Google Scholar]
  • R. Kromer, S. Costil, C. Verdy, S. Gojon, H. Liao, Laser surface texturing to enhance adhesion bond strength of spray coatings − cold spraying, wire-arc spraying, and atmospheric plasma spraying, Surf. Coatings Technol. 352 (2018) 642–653 [CrossRef] [Google Scholar]
  • M. Yu, W.-Y. Li, F.F. Wang, X.K. Suo, H.L. Liao, Effect of particle and substrate preheating on particle deformation behavior in cold spraying, Surf. Coatings Technol. 220 (2013) 174–178 [CrossRef] [Google Scholar]
  • S. Yin, X. Suo, Z. Guo, H. Liao, X. Wang, Deposition features of cold sprayed copper particles on preheated substrate, Surf. Coatings Technol. 268 (2015) 252–256 [CrossRef] [Google Scholar]
  • Y. Xie, M.-P. Planche, R. Raoelison, H. Liao, X. Suo, P. Hervé, Effect of substrate preheating on adhesive strength of SS 316L cold spraying coatings, J. Therm. Spray Technol. 25 (2016) 123–130 [CrossRef] [Google Scholar]
  • X.K. Suo, M. Yu, W.Y. Li, M.P. Planche, H.L. Liao, Effect of substrate preheating on bonding strength of cold-sprayed Mg coatings, J. Therm. Spray Technol. 21 (2012) 1091–1098 [CrossRef] [Google Scholar]
  • S. Yin, X. Suo, Y. Xie, W. Li, R. Lupoi, H. Liao, Effect of substrate temperature on interfacial bonding for cold spraying of Ni onto Cu, J. Mater. Sci. 50 (2015) 7448–7457 [CrossRef] [Google Scholar]
  • N.M. Chavan, M. Ramakrishna, P.S. Phani, D.S. Rao, G. Sundararajan, The influence of process parameters and heat treatment on the properties of cold sprayed silver coatings, Surf. Coatings Technol. 205 (2011) 4798–4807 [CrossRef] [Google Scholar]
  • R. Morgan, P. Fox, J. Pattison, C. Sutcliffe, W. O'Neill, Analysis of cold gas dynamically sprayed aluminium deposits, Mater. Lett. 58 (2004) 1317–1320 [CrossRef] [Google Scholar]
  • Q. Wang, N. Birbilis, M.-X. Zhang, Interfacial structure between particles in an aluminum deposit produced by cold spraying, Mater. Lett. 65 (2011) 1576–1578 [CrossRef] [Google Scholar]
  • C.W. Ziemian, M.M. Sharma, B.D. Bouffard, T. Nissley, T.J. Eden, Effect of substrate surface roughening and cold spraying coating on the fatigue life of AA2024 specimens, Mater. Des. 54 (2014) 212–221 [CrossRef] [Google Scholar]
  • K. Balani, T. Laha, A. Agarwal, J. Karthikeyan, N. Munroe, Effect of carrier gases on microstructural and electrochemical behavior of cold-sprayed 1100 aluminum coating, Surf. Coatings Technol. 195 (2005) 272–279 [CrossRef] [Google Scholar]
  • L. Ajdelsztajn, A. Zúñiga, B. Jodoin, E.J. Lavernia, Cold gas dynamic spraying of a high temperature Al alloy, Surf. Coatings Technol. 201 (2006) 2109–2116 [CrossRef] [Google Scholar]
  • B. Jodoin, L. Ajdelsztajn, E. Sansoucy, A. Zúñiga, P. Richer, E.J. Lavernia, Effect of particle size, morphology, and hardness on cold gas dynamic sprayed aluminum alloy coatings, Surf. Coatings Technol. 201 (2006) 3422–3429 [CrossRef] [Google Scholar]
  • R. Ghelichi, S. Bagherifard, D. Mac Donald, M. Brochu, H. Jahed, B. Jodoin et al., Fatigue strength of Al alloy cold sprayed with nanocrystalline powders, Int. J. Fatigue 65 (2014) 51–57 [CrossRef] [Google Scholar]
  • K. Spencer, M.-X. Zhang, Heat treatment of cold spraying coatings to form protective intermetallic layers, Scr. Mater. 61 (2009) 44–47 [CrossRef] [Google Scholar]
  • Y. Tao, T. Xiong, C. Sun, L. Kong, X. Cui, T. Li et al., Microstructure and corrosion performance of a cold sprayed aluminium coating on AZ91D magnesium alloy, Corros. Sci. 52 (2010) 3191–3197 [CrossRef] [Google Scholar]
  • H. Bu, M. Yandouzi, C. Lu, B. Jodoin, Effect of heat treatment on the intermetallic layer of cold sprayed aluminum coatings on magnesium alloy, Surf. Coatings Technol. 205 (2011) 4665–4671 [CrossRef] [Google Scholar]
  • A.P. Alkhimov, N.I. Nesterovich, A.N. Papyrin, Experimental investigation of supersonic two-phase flow over bodies, J. Appl. Mech. Tech. Phys. 23 (1982) 219–226 [CrossRef] [Google Scholar]
  • H. Lee, H. Shin, S. Lee, K. Ko, Effect of gas pressure on Al coatings by cold gas dynamic spray, Mater. Lett. 62 (2008) 1579–1581 [CrossRef] [Google Scholar]
  • T. Hussain, Cold spraying of titanium: a review of bonding mechanisms, microstructure and properties, Key Eng. Mater. Online 533 (2013) 53–90 [CrossRef] [Google Scholar]
  • S. Yin, X. Wang, X. Suo, H. Liao, Z. Guo, W. Li et al., Deposition behavior of thermally softened copper particles in cold spraying, Acta Mater. 61 (2013) 5105–5118 [CrossRef] [Google Scholar]
  • P.D. Eason, J.A. Fewkes, S.C. Kennett, T.J. Eden, K. Tello, M.J. Kaufman et al., On the characterization of bulk copper produced by cold gas dynamic spraying processesing in as fabricated and annealed conditions, Mater. Sci. Eng. A 528 (2011) 8174–8178 [CrossRef] [Google Scholar]
  • H.-J. Choi, M. Lee, J.Y. Lee, Application of a cold spraying technique to the fabrication of a copper canister for the geological disposal of CANDU spent fuels, Nucl. Eng. Des. 240 (2010) 2714–2720 [CrossRef] [Google Scholar]
  • M. Fukumoto, H. Terada, M. Mashiko, K. Sato, M. Yamada, E. Yamaguchi, Deposition of copper fine particle by cold spraying processes, Mater. Trans. 50 (2009) 1482–1488 [CrossRef] [Google Scholar]
  • M. Fukumoto, H. Wada, K. Tanabe, M. Yamada, E. Yamaguchi, A. Niwa et al. Effect of Substrate temperature on deposition behavior of copper particles on substrate surfaces in the cold spraying processes, J. Therm. Spray Technol. 16 (2007) 643–650 [CrossRef] [Google Scholar]
  • P. Poza, C.J. Múnez, M.A. Garrido-Maneiro, S. Vezzù, S. Rech, A. Trentin, Mechanical properties of Inconel 625 cold-sprayed coatings after laser remelting. Depth sensing indentation analysis, Surf. Coatings Technol. 243 (2014) 51–57 [CrossRef] [Google Scholar]
  • D. Levasseur, S. Yue, M. Brochu, Pressureless sintering of cold sprayed Inconel 718 deposit, Mater. Sci. Eng. A 556 (2012) 343–350 [CrossRef] [Google Scholar]
  • X. Meng, J. Zhang, J. Zhao, Y. Liang, Y. Zhang, Influence of gas temperature on microstructure and properties of cold spraying 304SS coating, J. Mater. Sci. Technol. 27 (2011) 809–815 [CrossRef] [Google Scholar]
  • A. Sova, S. Grigoriev, A. Okunkova, I. Smurov, Cold spraying deposition of 316L stainless steel coatings on aluminium surface with following laser post-treatment, Surf. Coatings Technol. 235 (2013) 283–289 [CrossRef] [Google Scholar]
  • M. Villa, S. Dosta, J.M. Guilemany, Optimization of 316L stainless steel coatings on light alloys using Cold Gas Spray, Surf. Coatings Technol. 235 (2013) 220–225 [CrossRef] [Google Scholar]
  • G. Bolelli, B. Bonferroni, H. Koivuluoto, L. Lusvarghi, P. Vuoristo, Depth-sensing indentation for assessing the mechanical properties of cold-sprayed Ta, Surf. Coatings Technol. 205 (2010) 2209–2217 [CrossRef] [Google Scholar]
  • R.S. Lima, A. Kucuk, C.C. Berndt, J. Karthikeyan, C.M. Kay, J. Lindemann, Deposition efficiency, mechanical properties and coating roughness in cold-sprayed titanium, J. Mater. Sci. Lett. 21 (2002) 1687–1689 [CrossRef] [Google Scholar]
  • C.K.S. Moy, J. Cairney, G. Ranzi, M. Jahedi, S.P. Ringer, Investigating the microstructure and composition of cold gas-dynamic spray (CGDS) Ti powder deposited on Al 6063 substrate, Surf. Coatings Technol. 204 (2010) 3739–3749 [CrossRef] [Google Scholar]
  • H.-R. Wang, W.-Y. Li, L. Ma, J. Wang, Q. Wang, Corrosion behavior of cold sprayed titanium protective coating on 1Cr13 substrate in seawater, Surf. Coatings Technol. 201 (2007) 5203–5206 [CrossRef] [Google Scholar]
  • S.H. Zahiri, C.I. Antonio, M. Jahedi, Elimination of porosity in directly fabricated titanium via cold gas dynamic spraying, J. Mater. Process. Technol. 209 (2009) 922–929 [CrossRef] [Google Scholar]
  • J. Cizek, O. Kovarik, J. Siegl, K.A. Khor, I. Dlouhy, Influence of plasma and cold spraying deposited Ti Layers on high-cycle fatigue properties of Ti6Al4V substrates, Surf. Coatings Technol. 217 (2013) 23–33 [CrossRef] [Google Scholar]
  • F. Robitaille, M. Yandouzi, S. Hind, B. Jodoin, Metallic coating of aerospace carbon/epoxy composites by the pulsed gas dynamic spraying process, Surf. Coatings Technol. 203 (2009) 2954–2960 [CrossRef] [Google Scholar]
  • W.-Y. Li, C.-J. Li, G.-J. Yang, Effect of impact-induced melting on interface microstructure and bonding of cold-sprayed zinc coating, Appl. Surf. Sci. 257 (2010) 1516–1523 [CrossRef] [Google Scholar]
  • W.-Y. Li, C. Zhang, X.P. Guo, G. Zhang, H.L. Liao, C.-J. Li, et al. Effect of standoff distance on coating deposition characteristics in cold spraying, Mater Des. 29 (2008) 297–304 [CrossRef] [Google Scholar]
  • J.G. Legoux, E. Irissou, C. Moreau, Effect of substrate temperature on the formation mechanism of cold-sprayed aluminum, zinc and tin coatings, J. Therm. Spray Technol. 16 (2007) 619–626 [CrossRef] [Google Scholar]
  • Z.B. Zhao, B.A. Gillispie, J.R. Smith, Coating deposition by the kinetic spraying processes, Surf. Coatings Technol. 200 (2006) 4746–4754 [CrossRef] [Google Scholar]
  • T. Van, H. Steenkiste, J.R. Smith, R.E. Teets, J.J. Moleski, D.W. Gorkiewicz, R.P. Tison et al., Kinetic spray coatings, Surf. Coatings Technol. 111 (1999) 62–71 [CrossRef] [Google Scholar]
  • F. Raletz, M. Vardelle, G. Ezo'o, Critical particle velocity under cold spraying conditions, Surf. Coatings Technol. 201 (2006) 1942–1947 [CrossRef] [Google Scholar]
  • C.-J. Li, W.-Y. Li, Y.-Y. Wang, Effect of Spray Angle on Deposition Characteristics in Cold spraying, ASM International, Therm. Spray, Ohio USA, 2003, pp. 91–96 [Google Scholar]
  • H. Fukanuma, N. Ohno, B. Sun, R. Huang, In-flight particle velocity measurements with DPV-2000 in cold spraying, Surf. Coatings Technol. 201 (2006) 1935–1941. [CrossRef] [Google Scholar]
  • W.-Y. Li, C. Zhang, H.-T. Wang, X.P. Guo, H.L. Liao, C.-J. Li et al., Significant influences of metal reactivity and oxide films at particle surfaces on coating microstructure in cold spraying, Appl. Surf. Sci. 253 (2007) 3557–3562 [CrossRef] [Google Scholar]
  • M. Yandouzi, P. Richer, B. Jodoin, SiC particulate reinforced Al-12Si alloy composite coatings produced by the pulsed gas dynamic spraying processes: microstructure and properties, Surf. Coatings Technol. 203 (2009) 3260–3270 [CrossRef] [Google Scholar]
  • X.-J. Ning, J.-H. Kim, H.-J. Kim, C. Lee, Characteristics and heat treatment of cold-sprayed Al–Sn binary alloy coatings, Appl. Surf. Sci. 255 (2009) 3933–3939 [CrossRef] [Google Scholar]
  • X.-J. Ning, J.-H. Jang, H.-J. Kim, C.-J. Li, C. Lee, Cold spraying of Al-Sn binary alloy: Coating characteristics and particle bonding features, Surf. Coatings Technol. 202 (2008) 1681–1687 [CrossRef] [Google Scholar]
  • E. Sansoucy, G.E. Kim, A.L. Moran, B. Jodoin, Mechanical characteristics of Al-Co-Ce coatings produced by the cold spraying processes, J. Therm. Spray Technol. 16 (2007) 651–660 [CrossRef] [Google Scholar]
  • P. Coddet, C. Verdy, C. Coddet, F. Lecouturier, F. Debray, Mechanical properties of Cold spraying deposited NARloy-Z copper alloy, Surf. Coatings Technol. 232 (2013) 652–657 [CrossRef] [Google Scholar]
  • S.V. Raj, C. Barrett, J. Karthikeyan, R. Garlick, Comparison of the cyclic oxidation behavior of cold sprayed CuCrAl-coated and uncoated GRCop-84 substrates for space launch vehicles, Surf. Coatings Technol. 201 (2007) 7222–7234 [CrossRef] [Google Scholar]
  • W.-Y. Li, C.-J. Li, H. Liao, C. Coddet, Effect of heat treatment on the microstructure and microhardness of cold-sprayed tin bronze coating, Appl. Surf. Sci. 253 (2007) 5967–5971 [CrossRef] [Google Scholar]
  • X. Guo, G. Zhang, W.-Y. Li, L. Dembinski, Y. Gao, H. Liao et al., Microstructure, microhardness and dry friction behavior of cold-sprayed tin bronze coatings, Appl. Surf. Sci. 254 (2007) 1482–1488 [CrossRef] [Google Scholar]
  • N. Cinca, E. López, S. Dosta, J.M. Guilemany, Study of stellite-6 deposition by cold gas spraying, Surf. Coatings Technol. 232 (2013) 891–898 [CrossRef] [Google Scholar]
  • N. Cinca, J.M. Guilemany, Structural and properties characterization of stellite coatings obtained by cold gas spraying, Surf. Coatings Technol. 220 (2013) 90–97 [CrossRef] [Google Scholar]
  • S. Rech, A. Surpi, S. Vezzù, A. Patelli, A. Trentin, J. Glor, et al., Cold-spray deposition of Ti2AlC coatings. Vacuum 94 (2013) 69–73 [CrossRef] [Google Scholar]
  • D.-M. Chun, J.-O. Choi, C.S. Lee, S.-H. Ahn, Effect of stand-off distance for cold gas spraying of fine ceramic particles (<5 µm) under low vacuum and room temperature using nano-particle deposition system (NPDS), Surf. Coatings Technol. 206 (2012) 2125–2132 [CrossRef] [Google Scholar]
  • P. Richer, M. Yandouzi, L. Beauvais, B. Jodoin, Oxidation behaviour of CoNiCrAlY bond coats produced by plasma, HVOF and cold gas dynamic spraying, Surf. Coatings Technol. 204 (2010) 3962–3974 [CrossRef] [Google Scholar]
  • A. Bonadei, T. Marrocco, Cold sprayed MCrAlY + X coating for gas turbine blades and vanes, Surf. Coatings Technol. 242 (2014) 200–206 [CrossRef] [Google Scholar]
  • G.-C. Ji, H.-T. Wang, X. Chen, X.-B. Bai, Z.-X. Dong, F-G. Yang, Characterization of cold-sprayed multimodal WC-12Co coating, Surf. Coatings Technol. 235 (2013) 536–543 [CrossRef] [Google Scholar]
  • H.-J. Kim, C.-H. Lee, S-Y. Hwang, Fabrication of WC-Co coatings by cold spraying deposition, Surf. Coatings Technol. 191 (2005) 335–340 [CrossRef] [Google Scholar]
  • A.S.M. Ang, C.C. Berndt, P. Cheang, Deposition effects of WC particle size on cold sprayed WC-Co coatings, Surf. Coatings Technol. 205 (2011) 3260–3267 [CrossRef] [Google Scholar]
  • S. Dosta, M. Couto, J.M. Guilemany, Cold spraying deposition of a WC-25Co cermet onto Al7075-T6 and carbon steel substrates, Acta Mater. 61 (2013) 643–652 [CrossRef] [Google Scholar]
  • M. Yandouzi, E. Sansoucy, L. Ajdelsztajn, B. Jodoin, WC-based cermet coatings produced by cold gas dynamic and pulsed gas dynamic spraying processes, Surf. Coatings Technol. 202 (2007) 382–390 [CrossRef] [Google Scholar]
  • W.-Y. Li, C.-J. Li, Optimal design of a novel cold spraying gun nozzle at a limited space, J ThermSpray Technol. 14 (2005) 391–396 [Google Scholar]
  • J. Karthikeyan, Development of oxidation resistant coatings on GRCop-84 substrates by cold spraying processes. NASA/CR 2007, 214706 [Google Scholar]
  • V.K. Champagne, P.F. Leyman, D. Helfritch, Magnesium repair by cold spraying, Plant. Surf. Finish. 95 (2008) 34 [Google Scholar]
  • B. DeForce, T. Eden, J. Potter, V. Champagne, P. Leyman, D. Helfritch, Application of aluminum coatings for the corrosion protection of magnesium by cold spraying, TRI Serv. Corros. (2007) 1–16 [Google Scholar]
  • J. Villafuerte, Current and future applications of cold spraying technology, Met. Finish. 108 (2010) 37–39 [CrossRef] [Google Scholar]
  • A. Shkodkin, A. Kashirin, O. Klyuev, T. Buzdygar, Peculiarities of Gas Dynamic Spray Applications in Russia, 2010. [Google Scholar]
  • A. Sova, S. Grigoriev, A. Okunkova, I. Smurov, Potential of cold gas dynamic spray as additive manufacturing technology, Int. J. Adv. Manuf. Technol. 69 (2013) 2269–2278 [CrossRef] [Google Scholar]
  • S. Yoon, H. Kim, C. Lee, Fabrication of automotive heat exchanger using kinetic spraying process, Surf. Coat. Technol. 201 (2007) 9524–9932 [CrossRef] [Google Scholar]
  • A. Choudhuri, P.S. Mohanty, J. Karthikeyan, Bioceramic composite coatings by cold spraying technology, Addit. Manuf. Process (2009) [Google Scholar]
  • K. Balani, A. Agarwal, S. Seal, J. Karthikeyan, Transmission electron microscopy of cold sprayed 1100 aluminum coating, Scr. Mater. 53 (2005) 845–850 [CrossRef] [Google Scholar]
  • V.K. Champagne, The repair of magnesium rotorcraft components by cold spraying, J. Fail. Anal. Prev. 8 (2008) 164–175 [CrossRef] [Google Scholar]
  • H. Assadi, H. Kreye, F. Gärtner, T. Klassen, Cold spraying − a materials perspective, Acta Mater. 116 (2016) 382–407 [CrossRef] [Google Scholar]