Open Access
Manufacturing Rev.
Volume 7, 2020
Article Number 23
Number of page(s) 13
Published online 29 July 2020
  • J.-P. Kruth, G. Levy, R. Schindel, T. Craeghs, E. Yasa, Consolidation of polymer powders by selective laser sintering, in Proceedings of the 3rd International Conference on Polymers and Moulds Innovations (2008) 15–30 [Google Scholar]
  • P.D. Hilton, P.F. Jacobs, Rapid tooling: technologies and industrial applications, New York, 2000 [CrossRef] [Google Scholar]
  • D. Gu, G. Zhang, Selective laser melting of novel nanocomposites parts with enhanced tribological performance: nanocrystalline TiC/Ti nanocomposites parts were built via SLM technology and the densification, microstructures, microhardness and tribological performance were, Virtual Phys. Prototyp. 8 (2013) 11–18 [CrossRef] [Google Scholar]
  • I. Gibson, D. Shi, Material properties and fabrication parameters in selective laser sintering process, Rapid Prototyp. J. 3 (1997) 129–136 [CrossRef] [Google Scholar]
  • F. Calignano, D. Manfredi, E.P. Ambrosio, L. Iuliano, P. Fino, Influence of process parameters on surface roughness of aluminum parts produced by DMLS, Int. J. Adv. Manufactur. Technol. 67 (2013) 2743–2751 [CrossRef] [Google Scholar]
  • N. Hopkinson, P. Erasenthiran, High speed sintering-early research into a new rapid manufacturing process, In Solid Freeform Fabrication Symposium (2004) 312–320 [Google Scholar]
  • B. Khoshnevis, B. Asiabanpour, M. Mojdeh, K. Palmer, SIS − a new SFF method based on powder sintering, Rapid Prototyp. J. 9 (2003) 30–36 [CrossRef] [Google Scholar]
  • H. Wu et al., Recent developments in polymers/polymer nano composites for additive manufacturing, Progr. Mater. Sci. (2020) 100638 [CrossRef] [Google Scholar]
  • S. Berretta, O. Ghita, K.E. Evans, Morphology of polymeric powders in Laser Sintering (LS): from polyamide to new PEEK powders, Eur. Polym. J. 59 (2014) 218–229 [CrossRef] [Google Scholar]
  • K. Palmer, B. Khoshnevis, Performance factors in the selective inhibition of sintering process, in IIE Annual Conference. Proceedings. Institute of Industrial and Systems Engineers (IISE) (2003) 1. [Google Scholar]
  • D. Rajamani, B. Esakki, Examining mechanical strength characteristics of selective inhibition sintered HDPE specimens using RSM and desirability approach, in IOP Conference Series: Materials Science and Engineering 234 (2017) 12002 [CrossRef] [Google Scholar]
  • B. Esakki, D. Rajamani, P. Arunkumar, An intelligent modeling system to predict mechanical strength characteristics of selective inhibition sintered parts using fuzzy logic approach, Mater. Today: Proc. 5 (2018) 11727–11737 [CrossRef] [Google Scholar]
  • S.M. Baligidad, U. Chandrasekhar, K. Elangovan, S. Shankar, Investigation of parameters influencing mechanical properties in SIS by using RSM, Int. J. Mater. Product Technol. 58 (2019) 178–200 [CrossRef] [Google Scholar]
  • C.R. Gagg, P.R. Lewis, In-service fatigue failure of engineered products and structures − case study review, Eng. Fail. Anal. 16 (2009) 1775–1793 [CrossRef] [Google Scholar]
  • A. Bhaduri, Mechanical Properties and Working of Metals and Alloys (Springer, Singapore, 2018) [CrossRef] [Google Scholar]
  • J. Happian-Smith, An introduction to modern vehicle design (Elsevier, 2001) [Google Scholar]
  • M. Schmid, K. Wegener, Additive manufacturing: polymers applicable for laser sintering (LS), Proc. Eng. 149 (2016) 457–464 [CrossRef] [Google Scholar]
  • R.D. Goodridge, C.J. Tuck, R.J.M. Hague, Laser sintering of polyamides and other polymers, Progr. Mater. Sci. 57 (2012) 229–267 [CrossRef] [Google Scholar]
  • S. Dadbakhsh, L. Verbelen, O. Verkinderen, D. Strobbe, P. Van Puyvelde, J.-P. Kruth, Effect of PA12 powder reuse on coalescence behaviour and microstructure of SLS parts, Eur. Polym. J. 92 (2017) 250–262 [CrossRef] [Google Scholar]
  • D. Rouholamin, N. Hopkinson, An investigation on the suitability of micro-computed tomography as a non-destructive technique to assess the morphology of laser sintered nylon 12 parts, Proc Inst. Mech. Eng. B 228 (2014) 1529–1542 [CrossRef] [Google Scholar]
  • M. Schmidt, D. Pohle, T. Rechtenwald, Selective laser sintering of PEEK, CIRP Ann. 56 (2007) 205–208 [CrossRef] [Google Scholar]
  • M. Pavan, T. Craeghs, P. Van Puyvelde, J. Kruth, W. Dewulf, Understanding the link between process parameters, microstructure and mechanical properties of laser sintered PA12 parts through X-ray computed tomography, 2016. [Google Scholar]
  • W. Zhu et al., A novel method based on selective laser sintering for preparing high-performance carbon fibers/polyamide12/epoxy ternary composites, Sci. Reports 6 (2016) 33780 [Google Scholar]
  • M. Vasquez, B. Haworth, N. Hopkinson, Optimum sintering region for laser sintered nylon-12, Proc. Inst. Mech. Eng. B 225 (2011) 2240–2248 [CrossRef] [Google Scholar]
  • L. Verbelen, S. Dadbakhsh, M. Van den Eynde, J.-P. Kruth, B. Goderis, P. Van Puyvelde, Characterization of polyamide powders for determination of laser sintering processability, Eur. Polym. J. (2016) 163–174 [CrossRef] [Google Scholar]
  • B. Van Hooreweder, F. De Coninck, D. Moens, R. Boonen, P. Sas, Microstructural characterization of SLS-PA12 specimens under dynamic tension/compression excitation, Polym. Testing 29 (2010) 319–326 [CrossRef] [Google Scholar]
  • B. Van Hooreweder, D. Moens, R. Boonen, J.-P. Kruth, P. Sas, On the difference in material structure and fatigue properties of nylon specimens produced by injection molding and selective laser sintering, Polym. Testing 32 (2013) 972–981 [CrossRef] [Google Scholar]
  • B. Van Hooreweder, J.-P. Kruth, High cycle fatigue properties of selective laser sintered parts in polyamide 12, CIRP Ann. 63 (2014) 241–244 [CrossRef] [Google Scholar]
  • J. Munguia, K. Dalgarno, Fatigue behaviour of laser sintered Nylon 12 in rotating and reversed bending tests, Mater. Sci. Technol. 31 (2015) 904–911 [CrossRef] [Google Scholar]
  • U.S.P.C. Vi and U.S.P.C. Vi, DuraForm® PA Plastic DuraForm® PA Plastic. [Google Scholar]
  • Dtm, S.L.S. process and DTM's DuraForm PA, Material Data Sheet. [Google Scholar]
  • B. Esakkia, D. Rajamania, P. Arunkumara, An intelligent modeling system to predict mechanical strength characteristics of selective inhibition sintered parts using fuzzy logic approach, Mater. Today 5 (2018) 11727–11737 [Google Scholar]
  • ASTM D7771–Standard Test Method for Uniaxial Fatigue Properties of Plastics, ASTM International, 2012 [Google Scholar]
  • F.K.M. Guideline, Analytical strength assessment of components in mechanical engineering, vol. 5, Norma, Frankfurt/Main: Forschungskuratorium Maschinenbau (FKM), 2003 [Google Scholar]
  • P. Wright, X. Fu, I. Sinclair, S.M. Spearing, Ultra high resolution computed tomography of damage in notched carbon fiber—epoxy composites, J. Compos. Mater. 42 (2008) 1993–2002 [CrossRef] [Google Scholar]
  • D. Baş, I.H. Boyacı, Modeling and optimization I: Usability of response surface methodology, J. Food Eng. 78 (2007) 836–845 [CrossRef] [Google Scholar]
  • D.B. McDonald, W.J. Grantham, W.L. Tabor, M.J. Murphy, Global and local optimization using radial basis function response surface models, Appl. Math. Model. 31 (2007) 2095–2110 [CrossRef] [Google Scholar]
  • G.E.P. Box, D.W. Behnken, Some new three level designs for the study of quantitative variables, Technometrics 2 (1960) 455–475 [CrossRef] [Google Scholar]
  • H. Öktem, T. Erzurumlu, H. Kurtaran, Application of response surface methodology in the optimization of cutting conditions for surface roughness, J. Mater. Proc. Technol. 170 (2005) 11–16 [CrossRef] [Google Scholar]
  • R.H. Myers, D.C. Montgomery, C.M. Anderson-Cook, Response surface methodology: process and product optimization using designed experiments, John Wiley & Sons (2016) [Google Scholar]
  • M.M.D. Zulkali, A.L. Ahmad, N.H. Norulakmal, Oryza sativa L. husk as heavy metal adsorbent: optimization with lead as model solution, Bioresource Technol. 97 (2006) 21–25 [CrossRef] [Google Scholar]
  • D. Pokhrel, T. Viraraghavan, Arsenic removal from aqueous solution by iron oxide-coated fungal biomass: a factorial design analysis, Water, Air, Soil Pollution 173 (2006) 195 [CrossRef] [Google Scholar]
  • J. Antony, Design of experiments for engineers and scientists, Elsevier (2014) [Google Scholar]
  • S.F.S. Shirazi et al., A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing, Sci. Technol. Adv. Mater. 16 (2015) 033502 [CrossRef] [PubMed] [Google Scholar]
  • T.D. Fender, Thermal spray high performance polymer coatings, Mater. Technol. 11 (1996) 16–20 [CrossRef] [Google Scholar]