Open Access
Issue
Manufacturing Rev.
Volume 8, 2021
Article Number 26
Number of page(s) 17
DOI https://doi.org/10.1051/mfreview/2021024
Published online 12 October 2021
  • S. Kusumadewi, S. Hartati, A. Harjoko, R. Wardoyo, Fuzzy Multi-Attribute Decision Making (FUZZY MADM), Penerbit Graha Ilmu, Yogyakarta 2006 [Google Scholar]
  • E.K. Zavadskas, Z. Turskis, J. Antucheviciene, A. Zakarevicius, Optimization of weighted aggregated sum product assessment, Elektr. ir Elektrotech 122 (2012) 3–6 [Google Scholar]
  • C.-L. Hwang, Y.-J. Lai, T.-Y. Liu, A new approach for multiple objective decision making, Comput. Oper. Res. 20 (1993) 889–899 [Google Scholar]
  • S. Opricovic, G.-H. Tzeng, Compromise solution by MCDM methods: a comparative analysis of VIKOR and TOPSIS, Eur. J. Oper. Res. 156 (2004) 445–455 [Google Scholar]
  • W. Brauers, Optimization methods for a stakeholder society. A revolution in economic thinking by multi-objective optimization, Springer, Kluwer, 2004 [Google Scholar]
  • E. Triantaphyllou, Multi-criteria Decision Making Methods: A Comparative Study, Springer − Science + Busines Media, 2020 [Google Scholar]
  • S. Mufazzal, S.M. Muzakkir, A new multi-criterion decision making (MCDM) method based on proximity indexed value for minimizing rank reversals, Comput. Ind. Eng. (2008) 1–38 [Google Scholar]
  • K. Maniya, M.G. Bhatt, A selection of material using a novel type decision-making method: preference selection index method, Mater. Des. 31 (2010) 1785–1789 [Google Scholar]
  • Ch.M. Rao, K. Venkatasubbaiah, Application of MCDM approach-TOPSIS for the multi-objective optimization problem, Int. J. Grid Distrib. Comput. 9 (2016) 17–32 [Google Scholar]
  • B. Singaravel, T. Selvaraj, Optimization of machining parameters in turning operation using combined TOPSIS and AHP method, Tehnički vjesnik 22 (2015) 1475–1480 [Google Scholar]
  • P. Umamahesarrao, D. Ranga Rauju, K. Naga Sai Suman, B. Ravi Sankar, Optimizing cutting parameters in hard turning of AISI 52100 steel using topsis approach, J. Mech. Energy Eng. 3 (2019) 227–232 [Google Scholar]
  • Ch.M. Rao, K.J. Rao, K.L. Rao, Multi-objective optimization of MRR, Ra and Rz using Topsis, Int. J. Eng. Sci. Res. Technol. 5 (2016) 376–384 [Google Scholar]
  • S.S. Mane, A.M. Mulla, Relevant optimization method selection in turning of AISI D2 steel using Crygenic cooling, Int. J. Creat. Res. Thoughts 8 (2020) 803–812 [Google Scholar]
  • K. Maity, A. Khan, Application of MCDM-based TOPSIS method for the selection of optimal process parameter in turning of pure titanium, Benchmarking 24 (2017) 1–19 [Google Scholar]
  • H. Majumder, A. Saha, Application of MCDM based hybrid optimization tool during turning of ASTM A588, Decis. Sci. Lett. 7 (2018) 143–156 [Google Scholar]
  • R. Singh, J.S. Dureja, M. Dogra, J.S. Randhawa, Optimization of machining parameters under MQL turning of Ti-6Al-4V alloy with textured tool using multi-attribute decision-making methods, World J. Eng. 16 (2019) 648–659 [Google Scholar]
  • N.V. Thien, D.H. Tien, N.-T. Nguyen, D.D. Trung, Multi-Objective Optimization of turning process using VIKOR method, J. Appl. Eng. Sci. (2021) [Google Scholar]
  • A. Khan, K. Maity, A novel MCDM approach for simultaneous optimization of some correlated machining parameters in turning of CP-titanium grade 2, Int. J. Eng. Res. Africa 22 (2016) 94–111 [Google Scholar]
  • K.A. Vikram, T.V.K. Kanth, Shabana, K. Suresh, Experimental evaluation for multi-response optimality on AISI 316L materials with coated carbide inserts using GRA and Vikor methods, Int. J. Mech. Product. Eng. Res. Dev. 8 (2018) 1197–1206 [Google Scholar]
  • I. Nayak, J. Rana, Selection of a suitable multiresponse optimization technique for turning operation, Decis. Sci. Lett. 5 (2016) 129–142 [Google Scholar]
  • G.K. Kumar, Ch.M. Rao, V.V.S. Kesava Rao, Investigation of effects of speed and depth of cut on multiple responses using Vikor analysis, Int. J. Modern Trends Eng. Res. 5 (2018) 164–168 [Google Scholar]
  • D.D. Trung, N.-T. Nguyen, D.V. Duc, Study on multi-objective optimization of the turning process of EN 10503 steel by combination of Taguchi method and Moora technique, Eureka 2 (2021) 52–65 [Google Scholar]
  • B. Singaravel, T. Selvaraj, S. Vinodh, Multi-objective optimization of turning parameters using the combined Moora and Entropy method, Trans. Can. Soc. Mech. Eng. 40 (2016) 101–111 [Google Scholar]
  • M. Abas, B. Salah, Q.S. Khalid, I. Hussain, A.R. Babar, R. Nawaz, R. Khan, W. Saleem, Experimental investigation and statistical evaluation of optimized cutting process parameters and cutting conditions to minimize cutting forces and shape deviations in Al6026-T9, Materials 13 (2020) 1–21 [Google Scholar]
  • A. Khan, K. Maity, D. Jhodkar, An integrated fuzzy-MOORA method for the selection of optimal parametric combination in turing of commercially pure titanium, Springer Ser. Adv. Manufactur. (2020) 163–184 [Google Scholar]
  • V.R. Pathapalli, V.R. Basam, S.K. Gudimetta, M.R. Koppula, Optimization of machining parameters using WASPAS and MOORA, World J. Eng. 17 (2020) 237–246 [Google Scholar]
  • A. Saha, H. Majumder, Multi criteria selection of optimal machining parameter in turning operation using comprehensive grey complex proportional assessment method for ASTM A36, Int. J. Eng. Res. Africa 23 (2016) 24–32 [Google Scholar]
  • Ch.M. Rao, P.S. Reddy, D. Suresh, R.J. Kumar, Optimization of turning process parameters using PSI-based desirability-grey analysis, Recent Adv. Mater. Sci. (2019) 231–246 [Google Scholar]
  • D.D. Trung, N.V. Thien, N.-T. Nguyen, Application of TOPSIS method in multi-objective optimization of the grinding process using segmented grinding wheel, Tribol. Ind. 43 (2021) 12–22 [Google Scholar]
  • N.Z. Khan, T.S.A. Ansari, A.N. Siddiquee, Z.A. Khan, Selection of E-learning websites using a novel Proximity Indexed Value (PIV) MCDM method, J. Comput. Edu. 6 (2019) 241–256 [Google Scholar]
  • S. Wakeel, S. Bingol, M.N. Bashir, S. Ahmad, Selection of sustainable material for the manufacturing of complex automotive products using a new hybrid Goal Programming Model for Best Worst Method-Proximity Indexed Value method, Proc. Inst. Mech. Eng. L 0 (2020) 1–15 [Google Scholar]
  • A. Ulutaş, Ç. Karakoy, An analysis of the logistics performance index of EU countries with an integrated MCDM model, Econ. Bus. Rev. 5 (2019) 49–69 [Google Scholar]
  • J. Raigar, V.S. Sharma, S. Srivastava, R. Chand, J. Singh, A decision support system for the selection of an additive manufacturing process using a new hybrid MCDM technique, Sādhanā 45 (2020) 1–14 [Google Scholar]
  • X. Li, K. Wang, L. Liu, J. Xin, H. Yang, C. Gao, Application of the entropy weight and TOPSIS method in safety evaluation of coal mines, Proc. Eng. 26 (2011) 2085–2091 [Google Scholar]
  • Y. Zhu, D. Tian, F. Yan, Effectiveness of entropy weight method in decision-making, Math. Probl. Eng. (2020) 1–5 [Google Scholar]
  • Z. Zhi-hong, Y. Yi, S. Jing-nan, Entropy method for determination of weight of evaluating in fuzzy synthetic evaluation for water quality assessment, J. Environ. Sci. 18 (2006) 1020–1023 [Google Scholar]
  • S.K. Pattnaik, M. Behera, S. Padhi, P. Dash, S.K. Sarangi, Study of cutting force and tool wear during turning of aluminium with WC, PCD and HFCVD coated MCD tools, Manufactur. Rev. 7 (2020) 1–14 [Google Scholar]
  • P.B. Patole, V.V. Kulkarni, S.G. Bhatwadekar, MQL machining with nano fluid: a review, Manufactur. Rev. 8 (2021) 1–18 [Google Scholar]
  • V.V.K. Lakshmi, K. Venkata Subbaiah, A.V. Kothapalli, K. Suresh, Parametric optimization while turning Ti-6Al-4V alloy in Mist-MQCL (Green environment) using the DEAR method, Manufactur. Rev. 7 (2020) 1–13 [Google Scholar]