Minor oils from atypical plant sources / Huiles mineures de sources végétales atypiques
Open Access
Issue
OCL
Volume 27, 2020
Minor oils from atypical plant sources / Huiles mineures de sources végétales atypiques
Article Number 29
Number of page(s) 9
Section Nutrition - Health
DOI https://doi.org/10.1051/ocl/2019035
Published online 19 May 2020
  • Abaza L, Mongi M, Douja D, Zarrouk M. 2002. Caractérisation des huiles de sept variétés d’olivier tunisiennes. OCL 9(2): 174–179. [EDP Sciences] [Google Scholar]
  • Abdulkarim SM, Long K, Lai OM, Muhammad SKS, Ghazali HM. 2007. Frying quality and stability of high-oleic Moringa oleifera seed oil in comparison with other vegetable oils. Food Chem 105: 1382–1389. [Google Scholar]
  • Akpabio UD, Akpakpan AE, Udo UE, Essien UC. 2012. Physicochemical characterization of exudates from Raffia Palm (Raphia hookeri). Adv Appl Sci Res 3(2): 838–843. [Google Scholar]
  • Aliyu A, Kuhiyop E, Hamza A. 2010. Extraction and characterization of landolphia seed oil. Adv Appl Sci Res 1(3): 265–268. [Google Scholar]
  • Alvarez AMR, Rodriguez MLG. 2000. Lipids in pharmaceutical and cosmetic preparations. Grasas y Aceites 51(Fasc. 1–2): 74–96. [Google Scholar]
  • Aruoma OI. 1998. Free radicals, oxidative stress and antioxidants in human health and disease. J Am Oil Chem Soc 75: 199–212. [PubMed] [Google Scholar]
  • Barua D, Buragohain J, Sarma SK. 2011. Certain physico-chemical changes in the soil brought about by contamination of crude oil in two oil fields of Assam, NE India. Eur J Exp Biol 1(3): 154–161. [Google Scholar]
  • Bhira O. 2012. Potentialités thérapeutiques d’opuntia ficus Indica en Maroc et en Tunisie. Thèse en pharmacie, Université Mohamed V. Rabat. Disponible sur http://ao.um5s.ac.ma/xmlui/handle/123456789/1754. [Google Scholar]
  • Boukeloua A. 2009. Effect of virgin fatty oil of Pistacia lentiscus on experimental burn wound’s healing in rabbits. Afr J Trad CAM 7(3): 258–263. [Google Scholar]
  • Charef M, Mohamed Yousfi M, Saidiet PS. 2008. Determination of the fatty acid composition of acorn (Quercus), Pistacia lentiscus seeds growing in Algeria. J Am Oil Chem Soc 85: 921–924. [Google Scholar]
  • Cheikh-Rouhou S, Besbes S, Hentati B, Blecker C, Deroanne C, Attia H. 2007. Nigella sativa L.: chemical composition and physicochemical characteristics of lipid fraction. Food Chem 101: 673–681. [Google Scholar]
  • Cissouma AI, Tounkara F, Nikoo M, Yang N, Xueming Xu. 2013. Physico chemical properties and antioxidant activity of roselle seed extracts. J Food Sci Technol 5(11): 1483–1489. [Google Scholar]
  • Demir C, Cetin M. 1999. Determination of tocopherols, fatty acids and oxidative stability of pecan, walnut and sunflower oils. Dtsch Lebensmitt Rundsch 95: 278–282. [Google Scholar]
  • Dhifi W, Nahida J, Emna C, et al. 2013. Chemical composition of Lentisk (Pistacia lentiscus L.) seedoil. Afr J Agric 8(16): 395–1400. [Google Scholar]
  • Durrett TP, Benning C, Ohlrogge J. 2008. Plant triacylglycerols as feed stocks for the production of biofuels. Plant J 54: 593–607. [CrossRef] [PubMed] [Google Scholar]
  • EEC/2598. 2003. Commission of the European Communities. Regulation 2568/91 on the characteristics of olive oil and olive-residues and on relevant methods of analysis. Off J Eur Commun L248: 1–109. [Google Scholar]
  • Eltayeib AA, AbdElaziz A. 2014. Physicochemical properties of Roselle (Hibiscus sabdariffa L.) seeds oil (Elrahad-1) in North Kordofan, Sudan. J Sci Innov Res 3(6): 578–582. [Google Scholar]
  • Ferguson L. 1995. Pistachio production. Center of Fruit and Nut Crop Research and Information. University of California at Davis. Department of Pomology, 2037 Wickson Hall. Davis, CA95616 USA, p. 160. [Google Scholar]
  • Gharby S, Harhar H, Charrouf Z, Bouzobaa Z, Boujghagh M, Zine S. 2015. Physicochemical composition and oxidative stability of Opuntia ficus-indica seed oil from Morocco. Acta Hortic 1(1067): 83–88. [Google Scholar]
  • Gul MK, Amar S. 2006. Sterols and the phytosterol content in oilseed rape (Brassicanapus L.). J Cell Mol Biol 5: 71–79. [Google Scholar]
  • Hilali M, Charrouf Z, Soulhi AEA, Hachimi L, Guillaume D. 2005. Influence of origin and extraction method on argan oil physico-chemical characteristics and composition. J Agric Food Chem 53: 2081–2087. [CrossRef] [PubMed] [Google Scholar]
  • IOC. 2015. COI/T.15/NC no 3/Rév. 8 février 2015 français Original : français. [Google Scholar]
  • ISO 9936. 2006. Animal and vegetable fats and oils – Determination of tocopherol and tocotrienol contents by high-performance liquid chromatography. pp. 1–17. [Google Scholar]
  • ISO 3960:2001 or AOCS Cd 8b-90. Peroxide value. [Google Scholar]
  • ISO 660 or AOCS Cd 3d-63(99). Free acidity. [Google Scholar]
  • Karlenskind A. 1992. Manuel des corps gras. Tome 1. Paris : Technique et documentation Lavoisier, pp 116–226. [Google Scholar]
  • Mahmoud MS, Nadia TA, Sobhy AS, et al. 2016. Assessment of Theileria equi and Babesia caballi infections in equine populations in Egypt by molecular, serological and hematological approaches. Parasit Vectors. DOI: 10.1186/s13071-016-1539-9. [Google Scholar]
  • Matthäus B, Özcan MM. 2011. Fatty acids, tocopherol, and sterol contents of some Nigella Species seed oil. Food Chem 130: 326–332. [Google Scholar]
  • Mínguez-Mosquera MI, Gandul-Rojas B, Montãno-Asquerino A, Garrido-Fernández J. 1991. Determination of chlorophylls and carotenoids by high-performance liquid chromatography during olive lactic fermentation. J Chromatogr 585: 259–266. [Google Scholar]
  • Mohamed R, Fernández J, Pineda M, Aguilar M. 2007. Roselle (Hibiscus sabdariffa) seed oil is a rich source of gamma-tocopherol. J Food Sci 72(3): S207–S211. [CrossRef] [PubMed] [Google Scholar]
  • Montero de Espinosa L, Meier MAR. 2011. Plant oils: The perfect renewable resource for polymer science. Eur Polym J 47, 837–852. [Google Scholar]
  • Odoemelam SA. 2005. Proximate composition and selected phytochemical properties of African Oil bean (Penthaclethra Macrophylla). Pak J Nutr 4(6): 382–383. [Google Scholar]
  • Rahman M, Jiménez MM. 2016. Designer oil crops. Chapter 15. In: Gupta SK, ed. Breeding oilseed crops for sustainable production. Opportunities and Constraints. United States: Elsevier, pp. 361–376. [Google Scholar]
  • Rakel MD. 2018. Benign prostatic hyperplasia. Chapter 60. In: Integrative medicine (Fourth Edition). United States: Elsevier, pp. 601–607. [Google Scholar]
  • Ramadan MF, Mörsel JT. 2002. Direct isocratic normal-phase HPLC assay for fat soluble vitamins and β-carotene in oil seeds. Eur food Res Technol 214: 521–527. [Google Scholar]
  • Ramadan MF, Mörsel JT. 2003. Oil cactus pear (Opuntia ficus indica L.). Food Chem 82: 339–345. [Google Scholar]
  • Ramadan MF, Mörsel JT. 2007. Impact of enzymatic treatment on chemical composition, physicochemical properties and radical scavenging activity of goldenberry (Physalis peruviana L.) juice. J Sci Food Agric 87(3): 452–460. [Google Scholar]
  • Tanouti K, Serghini-Caid H, Chaieb E, Benali A, Harkous M, Elamrani A. 2011. Amélioration qualitative d’huiles d’olive produites dans le Maroc Oriental. Les Technologies de Laboratoire 6(22): 1–12. [Google Scholar]
  • Thomas A. 2000. Fats and fatty oils. In: Wiley-VCH Verlag GmbH & Co. KGaA, eds. Ullmann’s Encyclopedia of Industrial Chemistry. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA. ISBN: 978-3-527-30673-2. [Google Scholar]
  • Tlili N, Bargougui A, Elfalleh W, Triki S, Nasri N. 2011. Phenolic compounds, protein, lipid content and fatty acids compositions of cactus seeds. J Med Plants Res 5(18): 4519–4524. [Google Scholar]
  • Toparslan C. 2012. À propos de Nigella sativa L. Thèse d’État de Doctorat en Pharmacie. Université de Lorraine. [Google Scholar]