Open Access
Volume 28, 2021
Article Number 47
Number of page(s) 9
Section Technology
Published online 12 October 2021
  • Alam MS, Kaur J, Khaira H, Gupta K. 2016. Extrusion and extruded products: Changes in quality attributes as affected by extrusion process parameters: A review. Crit Rev Food Sci Nutr 56(3): 445–473. [CrossRef] [PubMed] [Google Scholar]
  • Bernhard EC. 1974. Processing of thermoplastic materials. In: Plastic Engineering Series. New York, USA: Krieger Publishing Company, ISBN: 9780882751450. [Google Scholar]
  • Bisharat GI, Oikonomopoulou VP, Panagiotou NM, Krokida MK, Maroulis ZB. 2013. Effect of extrusion conditions on the structural properties of corn extrudates enriched with dehydrated vegetables. Food Res Int 53(1): 1–14. [CrossRef] [Google Scholar]
  • Bouvier J-M, Campanella OH. 2014. Extrusion processing technology: Food and non-food biomaterials. West Sussex, UK: John Wiley & Sons Ltd., pp. 536, ISBN: 978-1-4443-3811-9. [Google Scholar]
  • Chiruvella RV, Jaluria Y, Karwe MV. 1996. Numerical simulation of the extrusion process for food materials in a single-screw extruder. J Food Eng 30: 449–467. [CrossRef] [Google Scholar]
  • De Melo MMR, Şen A, Silvestre AJ, Pereira H, Silva CM. 2017. Experimental and modeling study of supercritical CO2 extraction of Quercus cerris cork: Influence of ethanol and particle size on extraction kinetics and selectivity to friedelin. Separat Purificat Technol 187: 34–45. [CrossRef] [Google Scholar]
  • del Valle JM. 2015. Extraction of natural compounds using supercritical CO2: Going from the laboratory to the industrial application. J Supercrit Fluids 96: 180–199. [CrossRef] [Google Scholar]
  • del Valle JM, de la Fuente JC. 2006. Supercritical CO2 extraction of oilseeds: Review of kinetic and equilibrium models. Crit Rev Food Sci Nutr 46(2): 131–160. [CrossRef] [PubMed] [Google Scholar]
  • Fletcher K. 1988. Numerical methods on the basis of Galerckina. World, Moscow (in Russian). [Google Scholar]
  • Isobe S, Zuber F, Uemura K, Noguchi A. 1992. A new twin‐screw press design for oil extraction of dehulled sunflower seeds. J Am Oil Chem Soc 69(9): 884–889. [CrossRef] [Google Scholar]
  • Jedinger N, Schrank S, Mohr S, Feichtinger A, Khinast J, Roblegg E. 2015. Alcohol dose dumping: The influence of ethanol on hot-melt extruded pellets comprising solid lipids. Eur J Pharm Biopharm 92: 83–95. [CrossRef] [PubMed] [Google Scholar]
  • Maskan M, Altan A. 2012. Advances in food extrusion technology. Florida, USA: CRC Taylor & Francis Group, pp. 398, ISBN: 978-1-4398-1521-2. [Google Scholar]
  • Meretukov ZA, Koshevoy EP. 2014. Increase of efficiency of process of extraction of oil from vegetative raw material with application of dioxide of carbon. In: 21st International Congress of Chemical and Process Engineering, CHISA 2014 and 17th Conference on Process Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction, PRES 2014, pp. 445–445. [Google Scholar]
  • Núñez GA, Gelmi CA, del Valle JM. 2011. Simulation of a supercritical carbon dioxide extraction plant with three extraction vessels. Comput Chem Eng 35: 2687–2695. [CrossRef] [Google Scholar]
  • Núñez GA, del Valle JM, Navia D. 2017. Supercritical CO2 oilseed extraction in multi-vessel plants. 3. Effect of extraction pressure and plant size on production cost. J Supercrit Fluids 122: 109–118. [CrossRef] [Google Scholar]
  • Riaz MN, ed. 2000. Extruders in food applications. Florida, USA: CRC Taylor & Francis Group, pp. 242, ISBN: 978-1-56676-779-8. [Google Scholar]
  • Said AB, Guinot C, Ruiz JC, et al. 2016. Supercritical CO2 extraction of contaminants from polypropylene intended for food contact: Effects of contaminant molecular structure and processing parameters. J Supercrit Fluids 110: 22–31. [CrossRef] [Google Scholar]
  • Shihani N, Kumbhar BK, Kulshrshtha M. 2006. Modeling of extrusion process using response surface methodology and artificial neural networks. J Eng Sci Technol 1(1): 31–40. [Google Scholar]
  • Singh S, Gamlath S, Wakeling L. 2007. Nutritional aspects of food extrusion: A review. Int J Food Sci Technol 42: 916–929. [CrossRef] [Google Scholar]
  • Song Y, Zheng L, Zhang X. 2017. Kinetics model for supercritical fluid extraction with variable mass transport. Int J Heat Mass Transf 112: 876–881. [CrossRef] [Google Scholar]
  • Sriti J, Talou T, Faye M, Vilarem G, Marzouk B. 2011. Oil extraction from coriander fruits by extrusion and comparison with solvent extraction processes. Ind Crops Prod 33: 659–664. [Google Scholar]
  • Toledo FR, del Valle JM, Opazo ÁP, Núnez GA. 2020. Supercritical CO2 extraction of pelletized oil seeds. Representation using a linear driving force model with a nonlinear sorption isotherm. J Food Eng 288: 110241. [CrossRef] [Google Scholar]
  • Tong H, Hai J. 2017. Extraction of garlic essential oil from a slurry by random packing combined with supercritical fluid technology. J Comput Theor Nanosci 14(9): 4597–4602. [CrossRef] [Google Scholar]
  • Uitterhaegen E, Evon P. 2017. Twin-screw extrusion technology for vegetable oil extraction: A review. J Food Eng 212: 190–200. [CrossRef] [Google Scholar]
  • Urrego FA, Núñez GA, Donaire YD, del Valle JM. 2015. Equilibrium partition of rapeseed oil between supercritical CO2 and prepressed rapeseed. J Supercrit Fluids 102: 80–91. [CrossRef] [Google Scholar]
  • Vandenbossche V, Candy L, Evon P, Rouilly A, Pontalier P-Y. 2019. Extrusion. Green Food Process Tech, 289–314. [CrossRef] [Google Scholar]