Open Access
Review
Issue
Renew. Energy Environ. Sustain.
Volume 4, 2019
Article Number 9
Number of page(s) 6
DOI https://doi.org/10.1051/rees/2019006
Published online 13 August 2019
  • F. Kuznik, J. Virgone, J. Noel, Optimization of a phase change material wallboard for building use, Appl. Therm. Eng. 28 , 1291–1298 (2008) [CrossRef] [Google Scholar]
  • K. Ismail, J. Castro, PCM thermal insulation in buildings, Int. J. Energy Res. 21 , 1281–1296 (1997) [CrossRef] [Google Scholar]
  • R. Baetens, B. Jelle, A. Gustavsend, Phase change materials for building applications: a state-of-the-art review, Energy Build 42 , 1361–1368 (2010) [CrossRef] [Google Scholar]
  • M. Farid, X. Chen, Domestic electric space heating with heat storage, Proc. Inst. Mech. Eng. 213 , 83–92 (1999) [CrossRef] [Google Scholar]
  • A. Regin, S. Solanki, J. Saini, Heat transfer characteristics of thermal energy storage system using PCM capsules: a review, Renew. Sust. Energy Rev. 12 , 2438–2458 (2008) [CrossRef] [Google Scholar]
  • M. Amar, M. Mohamed, A review on energy conservation in building applications with thermal storage by latent heat using phase change materials, Energy Convers. Manag. 45 , 263–275 (2004) [CrossRef] [Google Scholar]
  • H. Garg, S. Mullick, A. Bhargava, Solar Thermal Energy Storage (D. Reidel Publishing Co, Dordrecht, Holland, 1985) [CrossRef] [Google Scholar]
  • S. Hasnain, Review on sustainable thermal energy storage technologies, Part I: heat storage materials and techniques, Energy Convers. Manag. 39 , 1127–1138 (1998) [CrossRef] [Google Scholar]
  • D. Hawes, D. Banu, D. Feldman, Latent heat storage in concrete II, Solar Energy Mater. 21 , 61–80 (1990) [CrossRef] [Google Scholar]
  • Fraunhofer Institute for Solar Energy Systems ISE, Freiburg/Germany, 2002 [Google Scholar]
  • D. Hawes, D. Feldman, Absorption of phase change materials in concrete, Solar Energy Mater. Solar Cells 27 , 91–101 (1992) [CrossRef] [Google Scholar]
  • L. Cabeza, M. Medrano, C. Castellón, A. Castell, J. Roca, Thermal energy storage with phase change materials in building envelopes, Contrib. Sci. 3 , 501–510 (2007) [Google Scholar]
  • L. Cabeza, C. Castellón, M. Nogués, M. Medrano, R. Leppers, O. Zubillaga, Use of microencapsulated PCM in concrete walls for energy savings, Energy Build. 39 , 113–119 (2007) [CrossRef] [Google Scholar]
  • M. Hunger, A. Entrop, I. Mandilaras, H. Brouwers, M. Founti, The behavior of self-compacting concrete containing micro-encapsulated phase change materials, Cement Concr. Compos. 31 , 731–743 (2009) [CrossRef] [Google Scholar]
  • L. Tung-Chai, P. Chi-Sun, Use of phase change materials for thermal energy storage in concrete: an overview, Constr. Build. Mater. 46, 55–62 (2013) [Google Scholar]
  • T. Lee, D. Hawes, D. Banu, Feldman, Control aspects of latent heat storage and recovery in concrete, Solar Energy Mater. Solar Cells 62 , 217–237 (2000) [CrossRef] [Google Scholar]
  • A. Jeanjean, R. Olives, X. Py, Selection criteria of thermal mass materials for low-energy building construction applied to conventional and alternative materials, Energy Build. 63 , 36–48 (2013) [CrossRef] [Google Scholar]
  • D. Hawes, Latent Heat Storage, Ph.D. Thesis, Concordia University, 1991, p. 79 [Google Scholar]