Open Access
Research Article
Issue
Security and Safety
Volume 1, 2022
Article Number 2022003
Number of page(s) 21
Section Intelligent Transportation
DOI https://doi.org/10.1051/sands/2022003
Published online 22 June 2022
  • Chadza T, Kyriakopoulos KG and Lambotharan S. Analysis of hidden Markov model learning algorithms for the detection and prediction of multi-stage network attacks. Future Gener Comput Syst 2020; 108: 636–49. [CrossRef] [Google Scholar]
  • Sendi AS, Dagenais M and Jabbarifar M et al. Real time intrusion prediction based on optimized alerts with hidden Markov model. J Netw 2012; 7: 311–21. [Google Scholar]
  • Kavousi F and Akbari B. Automatic learning of attack behavior patterns using Bayesian networks. In: Proc. IEEE IST, Tehran, Iran, November 2012, 999–1004. [Google Scholar]
  • Wang S., Tang G and Kou G. et al. An attack graph generation method based on heuristic searching strategy. In: Proc. IEEE ICCC, Paris, France, July 2016, 1180–5. [Google Scholar]
  • Holgado P, Villagrá VA, Vázquez L. Real-time multistep attack prediction based on hidden Markov models. IEEE Trans Dependable Secure Comput 2020; 17: 134–47. [CrossRef] [Google Scholar]
  • Lyu L, Yu H and Yang Q. Threats to federated learning. Berlin, Germany: Springer, 2020. [Google Scholar]
  • Hayes J and Ohrimenko O. Contamination attacks and mitigation in multi-party machine learning. In: Proc. NIPS, Montreal, QC, Canada, December 2018, 6604–15. [Google Scholar]
  • Zhang J, Chen J and Wu D et al. Poisoning attack in federated learning using generative adversarial nets. In: Proc. IEEE TrustCom/BigDataSE, Rotorua, New Zealand, August 2019, 374–80. [Google Scholar]
  • Lim WYB, Luong NC and Hoang DT et al. Federated learning in mobile edge networks: a comprehensive survey. IEEE Commun Surv Tutorials 2020; 22: 2031–63. [CrossRef] [Google Scholar]
  • Xie C., Koyejo S and Gupta I. Slsgd: Secure and efficient distributed on-device machine learning. In: Proc. ECML PKDD, Würzburg, Germany, September 2019, 213–28. [Google Scholar]
  • Fung C, Yoon CJ and Beschastnikh I. The limitations of federated learning in sybil settings. In: Proc. RAID, San Sebastian, Spain, October 2020, 301–16. [Google Scholar]
  • Fang M., Cao X and Jia J. et al. Local model poisoning attacks to byzantine-robust federated learning. In: Proc. USENIX Security, Boston, MA, USA, August 2020, 1605–22. [Google Scholar]
  • Zhang J, Chen B and Cheng X et al. Poisongan: generative poisoning attacks against federated learning in edge computing systems. IEEE Internet Things J 2020; 8: 3310–22. [Google Scholar]
  • Tan J, Liang YC and Luong NC et al. Toward smart security enhancement of federated learning networks. IEEE Netw 2020; 35: 340–7. [Google Scholar]
  • Yin D., Chen Y and Kannan R. et al. Byzantine-robust distributed learning: towards optimal statistical rates. In: Proc. PMLR ICML, Stockholm, Sweden, July 2018, 5650–9. [Google Scholar]
  • Blanchard P., El Mhamdi EM and Guerraoui R et al. Machine learning with adversaries: byzantine tolerant gradient descent. In: Proc. NeurIPS, Long Beach, CA, USA, December 2017, 118–28. [Google Scholar]
  • Chen Y., Su L and Xu J. Distributed statistical machine learning in adversarial settings: byzantine gradient descent. In: Proc. ACM SIGMETRICS, Irvine, California, June 2018, 1–28. [Google Scholar]
  • Kang J, Xiong Z and Niyato D et al. Reliable federated learning for mobile networks. IEEE Wireless Commun 2020; 27: 72–80. [CrossRef] [Google Scholar]
  • Taheri R, Shojafar M and Alazab M et al. Fed-IIoT: a robust federated malware detection architecture in industrial IoT. IEEE Trans Ind Inform 2020; 17: 8442–52. [Google Scholar]
  • Doshi R., Apthorpe N and Feamster N. Machine learning DDoS detection for consumer Internet of things devices. In: Proc. IEEE SPW, Gothenburg, Sweden, May 2018, 29–35. [Google Scholar]
  • Agrawal N and Tapaswi S. Defense mechanisms against ddos attacks in a cloud computing environment: state-of-the-art and research challenges. IEEE Commun Surv Tutorials 2019; 21: 3769–95. [CrossRef] [Google Scholar]
  • Van Hasselt H., Guez A and Silver D. Deep reinforcement learning with double q-learning. In: Proc. AAAI, Phoenix, Arizona, USA, February 2016, 2094–100. [Google Scholar]
  • Sutton RS and Barto AG. Reinforcement Learning: An Introduction. Cambridge, MA, USA: MIT Press, 2018. [Google Scholar]
  • Bogler PL. Shafer-Dempster reasoning with applications to multisensor target identification systems. IEEE Trans Syst Man Cybern 1987; 17: 968–77. [CrossRef] [Google Scholar]
  • Xu R and Wunsch D. Survey of clustering algorithms. IEEE Trans Neural Netw 2005; 16: 645–78. [CrossRef] [PubMed] [Google Scholar]
  • Zhang G, Zhang C and Zhang H. Improved k-means algorithm based on density canopy. Knowl-Based Syst 2018; 145: 289–97. [CrossRef] [Google Scholar]
  • Xiang Z, Miller DJ, Kesidis G. A benchmark study of backdoor data poisoning defenses for deep neural network classifiers and a novel defense. In: Proc. MLSP, Pittsburgh, USA, October 2019, 1–6. [Google Scholar]
  • Chen B., Carvalho W and Baracaldo N. et al. Detecting backdoor attacks on deep neural networks by activation clustering. In: Proc. AAAI, Honolulu, Hawaii, January 2019, 1–8. [Google Scholar]
  • Li D, Wong WE and Wang W et al. Detection and mitigation of label-flipping attacks in federated learning systems with KPCA and K-means. In: Proc. DSA, Yinchuan, China, August 2021, 551–9. [Google Scholar]