Open Access
Sust. Build.
Volume 3, 2018
Article Number 4
Number of page(s) 11
Section Passive and Active Hybrid Approach to Building Designs
Published online 31 October 2018
  • Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the Energy Performance of Building, (retrieved 20 Apr. 2018) [Google Scholar]
  • Estimated Population by Locality 31st March, 2014, Government of Malta, 16 May 2014 [Google Scholar]
  • Census of Population and Housing 2011, National Statistics Office, Malta, 2012, (retrieved 30 Apr. 2018) [Google Scholar]
  • J.P. González, C. Yousif, Prioritising energy efficiency measures to achieve a zero net-energy hotel on the island of Gozo in the central Mediterranean, Energy Procedia 83, 50 (2015) [CrossRef] [Google Scholar]
  • An energy roadmap − towards achieving decarbonization for the Maltese Islands: analysis for a cost-effective and efficient heating and cooling, Ministry for Energy and Health, Malta, 2015 [Google Scholar]
  • Energy Efficiency Directive: Article 4-Building Renovation, Malta's Long-Term Strategy for Mobilising Investment in the Renovation of the National Stock of Residential and Commercial Buildings, Malta, Nov. 2017 [Google Scholar]
  • Minimum Energy Performance Requirements for Buildings in Malta, Technical Document F, Part 1, Building Regulation Office, Ministry for Transport and Infrastructure, Malta, 2015, (retrieved 20 Apr. 2018) [Google Scholar]
  • Meteonorm v7.2.4, Software, Global meteorological database for engineers, planners and education, Meteotest, Berne, Switzerland, 2018 [Google Scholar]
  • S.P. Borg, N.J. Kelly, K. Rizzo, Modelling and simulating the effects of the use of insulated building fabric in a multi-storey Maltese residential building, Sustainable Energy 2012: The ISE Annual Conference, 21 Feb. 2012, Qawra, Malta [Google Scholar]
  • T.F. Caruana, The effect of different glazing apertures on the thermal performance of Maltese buildings, M. Sc. dissertation, Institute for Sustainable Energy, University of Malta, Malta, 2015 [Google Scholar]
  • D. Gatt, C. Yousif, Zero CO2 buildings − how low can we go: a case study of a small hotel in Gozo, Sustainable Energy 2016: The ISE Annual Conference, 4 Oct. 2016, University of Malta, Valletta Campus, Malta, pp. 30–37 [Google Scholar]
  • D. Micallef, V. Buhagiar, S.P. Borg, Cross-ventilation of a room in a courtyard building, Energy Build. 133, 658 (2016) [CrossRef] [Google Scholar]
  • V. Buhagiar, P. Jones, Thermal performance of historic buildings in Malta: the use of prediction models as design tools for refurbishment, Teaching in Architecture (TIA) Conference, Florence, Italy, July 2000 [Google Scholar]
  • V. Buhagiar, P. Jones, Exploiting natural ventilation for renovation of historic buildings in an urban context, Passive & Low Energy Architecture PLEA2006, Geneva, Switzerland [Google Scholar]
  • X. Chen, H. Yang, W. Zhang, Simulation-based approach to optimize passively designed buildings: a case study on a typical architectural form in hot and humid climates, Renew. Sustain. Energy Rev. 82, 1712 (2018) [CrossRef] [Google Scholar]
  • X. Gong, Y. Akashi, D. Sumiyoshi, Optimization of passive design measures for residential buildings in different Chinese areas, Build. Environ. 58, 46 (2012) [CrossRef] [Google Scholar]
  • N.K. Khambadkone, R. Jain, A bioclimatic analysis tool for investigation of the potential of passive cooling and heating strategies in a composite Indian climate, Build. Environ. 123, 469 (2017) [CrossRef] [Google Scholar]
  • W.A. Friess, K. Rakhshan, A review of passive envelope measures for improved building energy efficiency in the UAE, Renew. Sustain. Energy Rev. 72, 485 (2017) [CrossRef] [Google Scholar]
  • S. Mirrahimi, M.F. Mohamed, L.C. Haw, N.L.N. Ibrahim, W.F.M. Yusoff, A. Aflaki, The effect of building envelope on the thermal comfort and energy saving for high rise buildings in hot-humid climate, Renew. Sustain. Energy Rev. 53, 1508 (2016) [CrossRef] [Google Scholar]
  • M. Santamouris, D. Kolokotsa, Passive cooling dissipation techniques for buildings and other structures: the state of the art, Energy Build. 57, 74 (2013) [CrossRef] [Google Scholar]
  • N. Artmann, R.L. Jensen, H. Manz, P. Heiselberg, Experimental investigation of heat transfer during night-time ventilation, Energy Build. 42, 366 (2010) [CrossRef] [Google Scholar]
  • N. Artmann, H. Manz, P. Heiselberg, Climatic potential for passive cooling of buildings by night-time ventilation in Europe, Appl. Energy 84, 187 (2007) [CrossRef] [Google Scholar]
  • N. Artmann, H. Manz, P. Heiselberg, Parameter study on performance of building cooling by night-time ventilation, Renew. Energy 33, 2589 (2008) [CrossRef] [Google Scholar]
  • C.M. Silva, M.G. Gomes, M. Silva, Green roofs energy performance in Mediterranean climate, Energy Build. 116, 318 (2016) [CrossRef] [Google Scholar]
  • F. Ascione, N. Bianco, F. de Rossi, R.F. De Masi, G.P. Vanoli, Concept, design and energy performance of a net zero-energy building in Mediterranean climate, Procedia Eng. 169, 26 (2016) [CrossRef] [Google Scholar]
  • A. Buonomano, U. Montanaro, A. Palombo, M. Vicidomini, NZEBs in Mediterranean climates: energy design and optimization for a non-residential building, Energy Procedia 82, 458 (2015) [CrossRef] [Google Scholar]
  • A. Michael, D. Demosthenous, M. Philokyprou, Natural ventilation for cooling in Mediterranean climate: a case study in vernacular architecture of Cyprus, Energy Build. 144, 333 (2017) [CrossRef] [Google Scholar]
  • A. Salvati, H. Coch, M. Morganti, Effects of urban compactness on the building energy performance in the Mediterranean climate, Energy Procedia 122, 499 (2017) [CrossRef] [Google Scholar]
  • D. Mora, C. Carpino, M. De Simone, Behavioral and physical factors influencing energy building performances in Mediterranean climate, Energy Procedia 78, 603 (2015) [CrossRef] [Google Scholar]
  • M.C. Peel, B.L. Finlayson, T.A. McMahon, Updated world map of the Köppen-Geiger climate classification, Hydrol. Earth Syst. Sci. 4, 439 (2007) [CrossRef] [Google Scholar]
  • Building Energy Software Tools Directory, U.S. regional affiliate of the International Building Performance Simulation Association (IBPSA), (retrieved May 5, 2018) [Google Scholar]
  • J.A. Clarke, Energy simulation in building design, Butterwoth-Heinemann, Oxford, 2001 [Google Scholar]
  • WUFI®Plus v3.1.0.3, Software, Thermal, energy and moisture simulation of buildings, Fraunhofer Institute for Building Physics IBP, Valley, Germany, 2017 [Google Scholar]
  • German standard DIN V 18599 Energetische Bewertung von Gebäuden − Berechnung des Nutz-, End- und Primärenergiebedarfs für Heizung, Kühlung, Lüftung, Trinkwarmwasser und Beleuchtung, Deutsches Institut für Normung e. V., Berlin, Germany, 2009 [Google Scholar]
  • S. Carlucci, L. Baia, R. de Dear, L. Yang, Review of adaptive thermal comfort models in built environmental regulatory documents, Build. Environ. 137, 73 (2018) [CrossRef] [Google Scholar]
  • European Standard EN 15251, Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Buildings Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics, 2012 [Google Scholar]
  • M. Vellei, M. Herrera, D. Fosas, S. Natarajan, The influence of relative humidity on adaptive thermal comfort, Build. Environ. 124, 171 (2017) [CrossRef] [Google Scholar]
  • D. Micallef, D. Bounaudet, R.N. Farrugia, S.P. Borg, V. Buhagiar, T. Sant, Characterisation of wind-driven ventilation in complex terrain conditions, International Conference for Wind Engineering, Prague, 2018 [Google Scholar]
  • M. Santamouris, On the energy impact of urban heat island and global warming on buildings, Energy Build. 82, 100 (2014) [CrossRef] [Google Scholar]
  • M. Santamouris, D. Kolokotsa, On the impact of urban overheating and extreme climatic conditions on housing, energy, comfort and environmental quality of vulnerable population in Europe, Energy Build. 98, 125 (2015) [CrossRef] [Google Scholar]
  • M. Christenson, H. Manz, D. Gyalistras, Climate warming impact on degree-days and building energy demand in Switzerland, Energy Convers. Manag. 47, 671 (2006) [CrossRef] [Google Scholar]
  • N. Artmann, D. Gyalistras, H. Manz, P. Heiselberg, Impact of climate warming on passive night cooling potential, Build. Res. Inform. 36, 111 (2008) [CrossRef] [Google Scholar]