Open Access
Issue
SICOT-J
Volume 5, 2019
Article Number 42
Number of page(s) 7
Section Spine
DOI https://doi.org/10.1051/sicotj/2019039
Published online 29 November 2019
  • Guo J-B, Zhu Y, Chen B-L, Xie B, Zhang W-Y, Yang Y-J, Yue Y-S, Wang X-Q (2015) Surgical versus non-surgical treatment for vertebral compression fracture with osteopenia: a systematic review and meta-analysis. PLoS One, 10, e0127145. [CrossRef] [PubMed] [Google Scholar]
  • Steffee AD, Biscup RS, Sitkowski DJ (1986) Segmental spine plates with pedicle screw fixation. A new internal fixation device for disorders of the lumbar and thoracolumbar spine. Clin Orthop Relat Res, 45–53. [Google Scholar]
  • El-Sharkawi M, Abdel Gawad M, El Sabrout AM, Hassan M (2017) Short versus long segment fixation for thoracolumbar burst fractures: a randomized controlled trial. Egypt Spine J, 24, 6–13. [CrossRef] [Google Scholar]
  • McCormack T, Karaikovic E, Gaines RW (1994) The load sharing classification of spine fractures. Spine (Phila Pa 1976), 19, 1741–1744. [CrossRef] [PubMed] [Google Scholar]
  • Dai LY, Jin WJ (2005) Interobserver and intraobserver reliability in the load sharing classification of the assessment of thoracolumbar burst fractures. Spine (Phila Pa 1976), 30, 354–358. [CrossRef] [PubMed] [Google Scholar]
  • Avanzi O, Landim E, Meves R, Caffaro MF, de Albuquerque Araujo Luyten F, Faria AA (2010) Thoracolumbar burst fracture: load sharing classification and posterior instrumentation failure. Rev Bras Ortop, 45, 236–240. [CrossRef] [PubMed] [Google Scholar]
  • Laxer E (1994) A further development in spinal instrumentation. Eur Spine J, 3, 347–352. [CrossRef] [PubMed] [Google Scholar]
  • Burns S, Biering-Sørensen F, Donovan W, Graves D, Jha A, Johansen M, Jones L, Krassioukov A, Kirshblum S, Mulcahey MJ, Read M, Waring W (2012) International standards for neurological classification of spinal cord injury, revised 2011. Top Spinal Cord Inj Rehabil, 18, 85–99. [Google Scholar]
  • Esses S (2006) Posterior short-segment instrumentation and fusion provides better results than combined anterior plus posterior stabilization for mid-lumbar (L2 to L4) burst fractures: Commentary. J Bone Jt Surg – Ser A, 88, 2311. [CrossRef] [Google Scholar]
  • Mahar A, Kim C, Wedemeyer M, Mitsunaga L, Odell T, Johnson B, Garfin S (2007) Short-segment fixation of lumbar burst fractures using pedicle fixation at the level of the fracture. Spine (Phila Pa 1976), 32, 1503–1507. [CrossRef] [PubMed] [Google Scholar]
  • Gelb D, Ludwig S, Karp JE, Chung EH, Werner C, Kim T, Poelstra K (2010) Successful treatment of thoracolumbar fractures with short-segment pedicle instrumentation. J Spinal Disord Tech, 23, 293–301. [CrossRef] [PubMed] [Google Scholar]
  • Parker JW, Lane JR, Karaikovic EE, Gaines RW (2000) Successful short-segment instrumentation and fusion for thoracolumbar spine fractures: A consecutive 4 1/2-year series. Spine (Phila Pa 1976), 25, 1157–1170 [CrossRef] [PubMed] [Google Scholar]
  • Korovessis P, Baikousis A, Zacharatos S, Petsinis G, Koureas G, Iliopoulos P (2006) Combined anterior plus posterior stabilization versus posterior short-segment instrumentation and fusion for mid-lumbar (L2–L4) burst fractures. Spine (Phila Pa 1976), 31, 859–868. [CrossRef] [PubMed] [Google Scholar]
  • Kim GW, Jang JW, Hur H, Lee JK, Kim JH, Kim SH (2014) Predictive factors for a kyphosis recurrence following short-segment pedicle screw fixation including fractured vertebral body in unstable thoracolumbar burst fractures. J Korean Neurosurg Soc, 56, 230–236. [CrossRef] [PubMed] [Google Scholar]
  • Yaman O, Dalbayrak S (2014) Kyphosis: diagnosis, classification and treatment methods. Turk Neurosurg, 24, 62–74. [Google Scholar]
  • Briem D, Behechtnejad A, Ouchmaev A, Morfeld M, Schermelleh-Engel K, Amling M, Rueger JM (2007) Pain regulation and health-related quality of life after thoracolumbar fractures of the spine. Eur Spine J, 16, 1925–1933. [CrossRef] [PubMed] [Google Scholar]
  • Rometsch E, Spruit M, Härtl R, McGuire RA, Gallo-Kopf BS, Kalampoki V, Kandziora F (2017) Does operative or nonoperative treatment achieve better results in A3 and A4 spinal fractures without neurological deficit? Systematic literature review with meta-analysis. Glob Spine J, 7, 350–372. [CrossRef] [Google Scholar]
  • Wahba GM, Bhatia N, Bui CNH, Lee KH, Lee TQ (2010) Biomechanical evaluation of short-segment posterior instrumentation with and without crosslinks in a human cadaveric unstable thoracolumbar burst fracture model. Spine (Phila Pa 1976), 35, 278–285. [CrossRef] [PubMed] [Google Scholar]
  • Court C, Vincent C (2012) Percutaneous fixation of thoracolumbar fractures: current concepts. Orthop Traumatol Surg Res, 98, 900–909. [CrossRef] [PubMed] [Google Scholar]
  • Gasbarrini A, Cappuccio M, Colangeli S, Posadas MD, Ghermandi R, Amendola L (2013) Complications in minimally invasive percutaneous fixation of thoracic and lumbar spine fractures and tumors. Eur Spine J, 22 (Suppl. 6), 965–971. [Google Scholar]
  • Giorgi H, Blondel B, Adetchessi T, Dufour H, Tropiano P, Fuentes S (2014) Early percutaneous fixation of spinal thoracolumbar fractures in polytrauma patients. Orthop Traumatol Surg Res, 100, 449–454. [CrossRef] [PubMed] [Google Scholar]
  • Elkhateeb T, Mahmoud A (2016) Posterior spinal fixation with fusion versus without fusion in treatment of dorsolumbar and lumbar fractures. Glob Spine J, 6 (1), DOI: 10.1055/s-0036-1582678. [Google Scholar]
  • Wang H, Zhao Y, Mo Z, Han J, Chen Y, Yu H, Wang Q, Liu J, Li C, Zhou Y, Xiang L (2017) Comparison of short-segment monoaxial and polyaxial pedicle screw fixation combined with intermediate screws in traumatic thoracolumbar fractures: A finite element study and clinical radiographic review. Clinics, 72, 609–617. [CrossRef] [PubMed] [Google Scholar]