Computation Challenges for engineering problems
Open Access
Issue
Int. J. Simul. Multidisci. Des. Optim.
Volume 12, 2021
Computation Challenges for engineering problems
Article Number 9
Number of page(s) 9
DOI https://doi.org/10.1051/smdo/2021010
Published online 20 July 2021
  • P.M. Duc, K. Wattanavichien, Study on biogas premixed charge diesel dual fuelled engine, Energy Convers. Manag. 48, 2286–2308 (2007) [Google Scholar]
  • K. Sudheesh, J.M. Mallikarjuna, Diethyl ether as an ignition improver for biogas homogeneous charge compression ignition (HCCI) operation − an experimental investigation, Energy 35, 3614–3622 (2010) [Google Scholar]
  • M. Feroskhan, S. Ismail, A review on the purification and use of biogas in compression ignition engines, Int. J. Automot. Mech. Eng. 14, 4383–4400 (2017) [Google Scholar]
  • T.W. Ryan, T.J. Callahan, Homogeneous charge compression ignition of diesel fuel, SAE Tech Pap, 1996, p. 961160 [Google Scholar]
  • M. Torres García, F. José Jiménez-Espadafor Aguilar, T. Sánchez Lencero, Experimental study of the performances of a modified diesel engine operating in homogeneous charge compression ignition (HCCI) combustion mode versus the original diesel combustion mode, Energy 34, 159–171 (2009) [Google Scholar]
  • Z. Chen, M. Konno, M. Oguma, T. Yanai, Experimental study of CI natural-gas/DME homogeneous charge engine, SAE Tech Paper, 442–451 (2000) [Google Scholar]
  • S. Swami Nathan, J.M. Mallikrajuna, A. Ramesh, Homogeneous charge compression ignition versus dual fuelling for utilizing biogas in compression ignition engines, Proc. Inst. Mech. Eng. D 223, 413–422 (2009) [Google Scholar]
  • R. Mobasheri, Z. Peng, CFD investigation into diesel fuel injection schemes with aid of homogeneity factor, Comput. Fluids 77, 12–23 (2013) [Google Scholar]
  • K.P. Nandha, J. Abraham, Dependence of fuel-air mixing characteristics on injection timing in an early-injection diesel engine, SAE Tech Pap., 2002, No. 2002-01–0944 [Google Scholar]
  • P. Dimitriou, W. Wang, J. Peng, L. Cheng, M. Wellers, B. Gao, Analysis of diesel engine in-cylinder air-fuel mixing with homogeneity factor: combined effects of pilot injection strategies and air motion, SAE Int. J. Eng. 7, 2045–2060 (2014) [Google Scholar]
  • Z. Peng, B. Liu, L. Tian, L. Lu, Analysis of homogeneity factor for diesel PCCI combustion control, SAE Tech Pap., 2011, No. 2011-01-1832 [Google Scholar]
  • N. Ramesh, J.M. Mallikarjuna, Evaluation of in-cylinder mixture homogeneity in a diesel HCCI engine − a CFD analysis, Eng. Sci. Technol. Int. J. 19, 917–925 (2016) [Google Scholar]
  • D. Barik, S. Murugan, Simultaneous reduction of NOx and smoke in a dual fuel DI diesel engine, Energy Convers. Manag. 84, 217–226 (2014) [Google Scholar]
  • K.J. Fidkowski, D.L. Darmofal, A triangular cut-cell adaptive method for high-order discretizations of the compressible Navier-Stokes equations, J. Comput. Phys. 225, 1653–1672 (2007) [Google Scholar]
  • M. Izadi Najafabadi, N. Abdul Aziz, Homogeneous charge compression ignition combustion: challenges and proposed solutions, J. Combust. 2013, 783–789 (2013) [Google Scholar]
  • E. Mancaruso, B.M. Vaglieco, Optical investigation of the combustion behaviour inside the engine operating in HCCI mode and using alternative diesel fuel, Exp. Therm. Fluid Sci. 34, 346–351 (2010) [Google Scholar]
  • T. Suzuki, T. Kakegawa, K. Hikino, A. Obata, Development of diesel combustion for commercial vehicles, SAE Tech Pap. 972685 (1997) [Google Scholar]
  • W.H. Kurniawan, S. Abdullah, K. Sopian, A. Shamsudeen, CFD investigation of fluid flow and turbulence field characteristics in a four-stroke automotive direct injection engine, J. Inst. Eng. 69, 1–12 (2008) [Google Scholar]
  • A. Viggiano, V. Magi, A comprehensive investigation on the emissions of ethanol HCCI engines, Appl. Energy 93, 277–287 (2012) [Google Scholar]
  • M.M.S. Ali, S.M.N. Islam, S.M. Sapuan, H.M. Megat, Effects of compression ratio on turbulence kinetic energy and dissipation in the suction stroke of a four stroke internal combustion engine, 4th International Conf Mech Eng. 165–172 (2001) [Google Scholar]
  • R. Kocheril, J. Elias, CFD simulation for evaluation of optimum heat transfer rate in a heat exchanger of an internal combustion engine, Int. J. Simul. Multidisci. Des. Optim. 11, 6 (2020) [Google Scholar]
  • J.J. Maisonneuve, F. Pécot, A. Pagès, M. Albertelli, J. Visconti, Comparison of two approaches for the direct optimisation of a car engine intake port, Int. J. Simul. Multidisci. Des. Optim. 2, 37–41 (2008) [Google Scholar]