Brightness Variations of the Sun and Sun-like Stars and Resulting Influences on their Environments
Open Access
J. Space Weather Space Clim.
Volume 7, 2017
Brightness Variations of the Sun and Sun-like Stars and Resulting Influences on their Environments
Article Number A11
Number of page(s) 14
Published online 19 April 2017
  • Austin, J., K. Tourpali, E. Rozanov, H. Akiyoshi, S. Bekki, et al. Coupled chemistry climate model simulations of the solar cycle in ozone and temperature. J. Geophys. Res., 113, D11306, 2008, DOI: 10.1029/2007JD009391. [CrossRef]
  • Ball, W.T., Y.C. Unruh, N.A. Krivova, S. Solanki, and J.W. Harder. Solar irradiance variability: a six-year comparison between SORCE observations and the SATIRE model. A&A, 530, A71, 2011, DOI: 10.1051/0004-6361/20116189. [NASA ADS] [CrossRef] [EDP Sciences]
  • Ball, W.T., J.D. Haigh, E.V. Rozanov, A. Kuchar, T. Sukhodolov, F. Tummon, A.V. Shapiro, and W. Schmutz. High solar cycle spectral variations inconsistent with stratospheric ozone observations. Nature, 9 (3), 206–209, 2016, DOI: 10.1038/ngeo2640.
  • Cahalan, R.F., G. Wen, J.W. Harder, and P. Pilewskie. Temperature responses to spectral solar variability on decadal time scales. Geophys. Res. Lett., 37, L07705, 2010, DOI: 10.1029/2009GL041898. [CrossRef]
  • Douglass, D.H., and B.D. Clader. Climate sensitivity of the Earth to solar irradiance. Geophys. Res. Lett., 29, 1786, 2002, DOI: 10.1029/2002GL015345. [CrossRef]
  • Dhomse, S.S., M.P. Chipperfield, W. Feng, W.T. Ball, Y.C. Unruh, D.J. Haigh, N.A. Krivova, S.K. Solanki, and A.K. Smith. Stratospheric O3 changes during 2001–2010: the small role of solar flux variations in a chemical transport model. Atmos. Chem. Phys., 13, 10113–10123, 2013, DOI: 10.5194/acp-13-10113-2013. [CrossRef]
  • Ermolli, I., K. Matthes, T. Dudok deWit, N.A. Krivova, K. Tourpali, et al. Recent variability of the solar spectral irradiance and its impact on climate modeling. Atmos. Chem. Phys., 13, 3945–3977, 2013, DOI: 10.5194/acp-13-3945-2013. [NASA ADS] [CrossRef]
  • Fontenla, J.M., J. Harder, W. Livingston, M. Snow, and T. Woods. High-resolutoin solar irradiance from extreme ultraviolet to far infrared. J. Geophys. Res., 116, D20108, 2011, DOI: 10.1029/211JD016032. [NASA ADS] [CrossRef]
  • Frame, T., and L.J. Gray. The 11-yr cycle in ERA-40 data: an update to 2008. J. Climate, 23, 2213–2222, 2010, DOI: 10.1175/2009JCLI3150.1. [CrossRef]
  • Geer, A.J., W.A. Lahoz, D.R. Jackson, D. Cariolle, and J.P. McCormack. Evaluation of linear ozone photochemistry parameterization in a stratosphere-troposphere data assimilation system. Atmos. Chem. Phys., 7, 939–957, 2007, DOI: 19.5194/acp-7-939-2007. [CrossRef]
  • Gray, L.J., J. Beer, M. Geller, J.D. Haigh, M. Lockwood, et al. Solar influence on climate. Rev. Geophys., 48, RG4001, 2010, DOI: 10.1029/2009GR000282. [NASA ADS] [CrossRef]
  • Gray, L.J., A.A. Scaife, D.M. Mitchell, S. Osprey, S. Ineson, et al. A lagged response to the 11 year solar cycle in observed winter Atlantic/European weather patterns. J. Geophys. Res. Atmos., 118 (13), 405–13420, 2013, DOI: 10.1002/2013JD020062. [CrossRef]
  • Haigh, J.D. The impact of solar variability on climate. Science, 272, 981–984, 1996, DOI: 10.1126/science.272.5264.981. [NASA ADS] [CrossRef] [PubMed]
  • Haigh, J.D. The effects of solar variability on the Earth’s climate. Philos. Trans. R. Soc. London, Ser. A, 361, 95–111, 2003, DOI: 10.1098/rsta.2002.1111. [CrossRef]
  • Haigh, J.D., A.R. Winning, R. Toumi, and J.W. Harder. An influence of spectral solar variations on radiative forcing of climate. Nature, 467, 696–699, 2010, DOI: 10.1038/nature09426. [NASA ADS] [CrossRef] [PubMed]
  • Harder, J.W., J.M. Fontenla, P. Pilewskie, E.C. Richard, and T.N. Woods. Trends in solar spectral irradiance variability in the visible and infrared. Geophys. Res. Lett., 36, L07801, 2009, DOI: 10.1029/2008GL036797. [NASA ADS] [CrossRef]
  • Hansen, J., G. Russell, D. Rind, P. Stone, A. Lacis, S. Lebedeff, R. Ruedy, and L. Travis. Efficient three-dimensional global models for climate studies: models I and II. Mon. Weather Rev., 111, 609–662, 1983, DOI: 10.1175/1520-0493(1983)111<0609:ETDGMF>2.0.CO;2. [CrossRef]
  • Hood, L.L., S. Misios, D.M. Mitchell, E. Rozanov, L.J. Gray, et al. Solar signals in CMIP-5 simulations: the ozone response. Q. J. R. Meteorol. Soc., 141, 2670–2689, 2015, DOI: 10.1002/qj.2553. [CrossRef]
  • Ineson, S., A.A. Scaife, J.R. Knight, J.C. Manners, N.J. Dunstone, L.J. Gray, and J.D. Haigh. Solar forcing of winter climate variability in the Northern Hemisphere. Nat. Geosci., 4, 753–757, 2011, DOI: 10.1038/NGEO1282. [CrossRef]
  • Kidston, J., A.A. Scaife, S.C. Hardiman, D.M. Mitchell, N. Butchart, M.P. Baldwin, and L.J. Gray. Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nat. Geosci., 8, 433–440, 2015, DOI: 10.1038/ngeo2424. [CrossRef]
  • Kodera, K., and Y. Kuroda. Dynamical response to the solar cycle: winter stratopause and lower stratosphere. J. Geophys Res., 107 (D24), 4749, 2002,DOI: 10.1029/2002JD002224. [CrossRef]
  • Kopp, G., and J.L. Lean. A new, lower value of total solar irradiance: evidence and climate significance. Geophys. Res. Lett., 38, L01706, 2011, DOI: 10.1029/2010GL045777. [NASA ADS] [CrossRef]
  • Kopp, G. An assessment of the solar irradiance record for climate studies. J. Space Weather Space Clim., 4, A14, 2014, DOI: 10.105/swsc/2014012. [NASA ADS] [CrossRef] [EDP Sciences]
  • Kopp, G. Magnitudes and timescales of total solar irradiance variability. J. Space Weather Space Clim., 6, A30, 2016, DOI: 10.1051/swsc/2016025. [CrossRef] [EDP Sciences]
  • Krivova, N.A., L.E.A. Vieira, and S.K. Solanki. Reconstruction of solar spectral irradiance since the Maunder Minimum. J. Geophys. Res., 115, A12112, 2010, DOI: 10.1029/2010JA015431. [NASA ADS] [CrossRef]
  • Lacis, A.A., and V. Oinas. A description of the correlated k distributed method for modeling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres. J. Geophys. Res., 96, 9027–9063, 1991, DOI: 10.1029/90JD01945. [NASA ADS] [CrossRef]
  • Lacis, A.A., J.E. Hansen, G.L. Russell, V. Oinas, and J. Jonas. The role of long-lived greenhouse gases as principal LW control knob that governs the global surface temperature for past and future climate change. Tellus B, 65, 19734, 2013, DOI: 10.3402/tellusb.v65i0.19734. [CrossRef]
  • Lean, J. Evolution of the Sun’s spectral irradiance since the Maunder Minimum. Geophys. Res. Lett., 27 (16), 2425–2428, 2000, DOI: 10.1029/2000GL000043. [NASA ADS] [CrossRef]
  • Lean, J., and M.T. DeLand. How does Sun’s spectrum vary? J. Climate, 25 (7), 2555–2560, 2012, DOI: 10.1175/JCLI-D-11-00571.1. [NASA ADS] [CrossRef]
  • Lee, J.N., R.F. Cahalan, and D.L. Wu. Solar rotational modulations of spectral irradiance and correlations with the variability of total solar irradiance. J. Space Weather Space Clim., 6, A33, 2016, DOI: 10.1051/swsc/2016028. [CrossRef] [EDP Sciences]
  • Matthes, K., Y. Kuroda, K. Kodera, and U. Langematz. Transfer of the solar signal from the stratosphere to the troposphere: northern winter. J. Geophys. Res., 111, D06108, 2006, DOI: 10.1029/2005JD006283. [CrossRef]
  • McClintock, W.E., G.J. Rottman, and T.N. Woods. Solar-Stellar Irradiance Comparison Experiment II (SOLSTICE II): instrument concept and design. Sol. Phys., 230, 225–258, 2005, DOI: 10.1007/s11207-005-7432-x. [NASA ADS] [CrossRef]
  • McLinden, C.A., S.C. Olsen, B. Hannegan, O. Wild, M.J. Prather, and J. Sundet. Stratospheric ozone in 3-D models: a simple chemistry and the cross-tropopause flux. J. Geophys. Res., 105, 14,653–14,666, 2000, DOI: 10.1029/2000JD90014. [CrossRef]
  • Meehl, G.A., J.M. Arblaster, K. Matthes, F. Sassi, and H. van Loon. Amplifying the Pacific climate system response to a small 11 year solar cycle forcing. Science, 325, 1114–1118, 2009, DOI: 10.1126/science.1172872. [NASA ADS] [CrossRef] [PubMed]
  • Merkel, A.W., J.W. Harder, D.R. Marsh, A.K. Smith, J.M. Fontenla, and T.N. Woods. The impact of solar spectral irradiance variability on middle atmospheric ozone. Geophys. Res. Lett., 38, L13802, 2011, DOI: 10.1029/ 2011GL047561. [NASA ADS] [CrossRef]
  • Misios, S., D.M. Mitchell, L.J. Gray, K. Tourpali, K. Matthes, et al. Solar signals in CMIP-5 simulations: effects of atmosphere–ocean coupling. Q. J. R. Meteorol. Soc., 142, 928–941, 2015, DOI: 10.1002/qj.2695. [CrossRef]
  • Mitchell, D., S. Misios, L.J. Gray, K. Tourpali, K. Matthes, L. Hood, H. Schmidt, G. Chiodo, R. Thieblemont, E. Rozanov, D. Shindell, and A. Krivolutsky. Solar signals in CMIP-5 simulations: the stratospheric pathway. Q. J. R. Meteorol. Soc., 141, 2390–2403, 2015, DOI: 10.1002/qj.2530. [CrossRef]
  • Oberländer, S., U. Langematz, K. Matthes, M. Kunze, A. Kubin, et al. The influence of spectral solar irradiance data on stratospheric heating rates during the 11 year solar cycle. Geophys. Res. Lett., 39, L01801, 2012, DOI: 10.1029/2011GL049539. [NASA ADS] [CrossRef]
  • Oinas, V., A.A. Lacis, D. Rind, D.T. Shindell, and J.E. Hansen. Radiative cooling by stratospheric water vapor: big differences in GCM results. Geophys. Res. Lett., 28, 2791–2794, 2001, DOI: 10.1029/2001GL013137. [CrossRef]
  • Pawson, S., W. Steinbrecht, A.J. Charlton-Perez, M. Fujiwara, A.Yu. Karpechko, I. Petropavlovskikh, J. Urban, and M. Weber. Update on global ozone: past, present, and future, Chapter 2 In: Scientific Assessment of Ozone Depletion: 2014, Global Ozone Research and Monitoring Project – Report No. 55, World Meteorological Organization, Geneva, Switzerland, 2014.
  • Preminger, D., G. Chapman, and A. Cookson. Activity-brightness correlations for the Sun and Sun-like stars. Astrophys. J. Lett., 739, 6, 2011, DOI: 10.1088/2041-8205/739/2/L45. [NASA ADS] [CrossRef]
  • Remsberg, E.E. On the response of Halogen Occultation Experiment (HALOE) stratospheric ozone and temperature to the 11‐year solar cycle forcing. J. Geophys. Res., 113, D22304, 2008, DOI: 10.1029/2008JD010189. [CrossRef]
  • Rind, D., J. Lerner, J. Perlwitz, C. McLinden, and M. Prather. Sensitivity of tracer transports and stratospheric ozone to sea surface temperature patterns in the doubled CO2 climate. J. Geophys. Res., 107 (D24), 4800, 2002, DOI: 10.1029/2002JD002483. [CrossRef]
  • Rind, D., J. Lerner, J. Jonas, and C. McLinden. Effects of resolution and model physics on tracer transports in the NASA Goddard Institute for Space Studies general circulation models. J. Geophys. Res., 112, D09315, 2007, DOI: 10.1029/2006JD007476. [CrossRef]
  • Rind, D., J. Lean, J. Lerner, P. Lonergan, and A. Leboissitier. Exploring the stratospheric/tropospheric response to solar forcing. J. Geophys. Res., 113, D24103, 2008, DOI: 10.1029/2008JD010114. [NASA ADS] [CrossRef]
  • Rind, D., J. Lean, and J. Jonas. The impact of different absolute solar irradiance values on current climate model simulations. J. Climate, 27, 1100–1120, 2013, DOI: 10.1175/JCLI-D-13-00136.1. [CrossRef]
  • Scafetta, N., and R. Willson. ACRIM total solar irradiance satellite composite validation versus TSI proxy models. Astrophys. Space Sci., 350 (2), 421–442, 2014, DOI: 10.1007/s10509-013-1775-9. [CrossRef]
  • Schmutz, W., A. Fehlmann, W. Finsterle, G. Kopp, and G. Thuillier. Radiation processes in the atmosphere and ocean (IRS2012), AIP Conf. Proc., 1531, 624–627, 2013, DOI: 10.1063/1.4804847. [NASA ADS] [CrossRef]
  • Shapiro, A.V., E.V. Rozanov, A.I. Shapiro, T.A. Egorova, J. Harder, M. Weber, A.K. Smith, W. Schmutz, and T. Peter. The role of the solar irradiance variability in the evolution of the middle atmosphere during 2004–2009. J. Geophys. Res. Atmos., 118, 3781–3793, 2013, DOI: 10.1002/jgrd.50208. [NASA ADS] [CrossRef]
  • Shindell, D., D. Rind, N. Balachandran, J. Lean, and P. Lonergan. Solar cycle varibilty, ozone, and climate. Science, 284, 305–308, 1999, DOI: 10.1126/science.284.5412.305. [NASA ADS] [CrossRef] [PubMed]
  • Solanki, S.K., N.A. Krivova, and J.D. Haigh. Solar irradiance variability and climate. Annu. Rev. Astron. Astrophys., 51, 311–351, 2013, DOI: 10.1146/annurev-astro-082812-141007. [NASA ADS] [CrossRef]
  • Swartz, W.H., R.S. Stolarski, L.D. Oman, E.L. Fleming, and C.H. Jackman. Middle atmosphere response to different descriptions of the 11-yr solar cycle in spectral irradiance in a chemistry-climate model. Atmos. Chem. Phys., 12, 5937–5948, 2012, DOI: 10.5194/acp-12-5937-2012. [CrossRef]
  • Tung, K.K., and C.D. Camp. Solar cycle warming at the Earth’s surface in NCEP and ERA‐40 data: A linear discriminant analysis. J. Geophys. Res., 113, D05114, 2008, DOI: 10.1029/2007JD009164. [CrossRef]
  • Unruh, Y.C., W. Ball, and N.A. Krivova. Solar irradiance models and measurements: a comparison in the 220–240 nm wavelength band. Surv. Geophys., 33, 475–481, 2012, DOI: 10.1007/s10712-011-9166-7. [NASA ADS] [CrossRef]
  • Wang, S., K. Li, T.J. Pongetti, S.P. Sander, Y.L. Yung, et al. Mid-latitude atmospheric OH responses to the most recent 11-year solar cycle. PNAS, 110, 2023–2028, 2013, DOI: 10.10.1073/pnas.1117790110. [CrossRef]
  • Wen, G., R.F. Cahalan, J.D. Haigh, P. Pilewskie, L. Oreopoulos, and J.W. Harder. Reconciliation of modeled climate responses to spectral solar forcing. J. Geophys. Res. Atmos., 118, 6281–6289, 2013, DOI: 10.1002/jgrd.50506. [CrossRef]
  • White, W., J. Lean, D.R. Cayan, and M.D. Dettinger. Response of global upper ocean temperature to changing solar irradiance. J. Geophys. Res. [Oceans], 102, 3255–3266, 1997, DOI: 10.1029/96JC03549. [CrossRef]
  • WMO (World Meteorology Organization), Scientific assessment of ozone depletion: 2010. Global Ozone Research and Monitoring Project-Report No. 52, 516, Geneva, Switzerland, 2011.
  • Yeo, K.L., N.A. Krivoav, and S.K. Solanki. Solar cycle variation in solar irradiance. Space Sci. Rev., 186, 137–167, 2014, DOI: 10.1007/s11214-014-0061-7. [NASA ADS] [CrossRef]
  • Zwiers, F.W., and H. von Storch. Taking serial correlation into account in tests of the mean. J. Climate, 8, 336–351, 1995, DOI: 10.1175/1520-0442(1995)008<0336:tsciai>2.0.CO;2. [CrossRef]