Flares, coronal mass ejections and solar energetic particles and their space weather impacts
Open Access
Issue
J. Space Weather Space Clim.
Volume 8, 2018
Flares, coronal mass ejections and solar energetic particles and their space weather impacts
Article Number A09
Number of page(s) 19
DOI https://doi.org/10.1051/swsc/2017046
Published online 13 February 2018
  • Arge CN, Pizzo VJ. 2000. Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates. J Geophys Res 105: 10465–10480. [NASA ADS] [CrossRef]
  • Burlaga LFE. 1991. Magnetic Clouds. In R. Schwenn, and E. Marsch, eds., Physics of the Inner Heliosphere II. p. 152.
  • Burlaga LF, et al. 2002. Successive CMEs and complex ejecta. J Geophys Res: Space Phys 107: 1266. DOI:10.1029/2001JA000255. [NASA ADS] [CrossRef]
  • Cane HV, Lario D. 2006. An introduction to CMEs and energetic particles. Space Sci Rev 123: 45–56. [CrossRef]
  • Canfield RC, et al. 1999. Sigmoidal morphology and eruptive solar activity. Geophys Res Lett 26: 627–630. [NASA ADS] [CrossRef]
  • Cannon P, et al. 2013. Extreme space weather: impacts on engineered systems and infrastructure. Tech. rep., Royal Academy of Engineering, London, UK.
  • Chen C, et al. 2011. Statistical study of coronal mass ejection source locations: 2. Role of active regions in CME production. J Geophys Res: Space Phys 116: A12108. [CrossRef]
  • Cid C, et al. 2012. Can a halo CME from the limb be geoeffective? J Geophys Res 117.
  • Cliver EW, et al. 2005. On the origins of Solar EIT waves. Astrophys J 631: 604–611. [NASA ADS] [CrossRef]
  • Dierckxsens M, et al. 2015. Relationship between solar energetic particles and properties of flares and CMEs: statistical analysis of solar cycle 23 events. Sol Phys 290: 841–874. DOI:10.1007/s11207-014-0641-4. [CrossRef]
  • Dumbović M, et al. 2015. Geoeffectiveness of coronal mass ejections in the SOHO Era. Sol Phys 290: 579–612. DOI:10.1007/s11207-014-0613-8. [CrossRef]
  • Emmons D, et al. 2013. Ensemble forecasting of coronal mass ejections using the WSA-ENLIL with CONED model. Space Weather 11: 95–106. DOI:10.1002/swe.20019. [CrossRef]
  • Gonzalez WD, et al. 1994. What is a geomagnetic storm? J Geophys Res 99: 5771–5792. [NASA ADS] [CrossRef]
  • Gopalswamy N, et al. 2001. Predicting the 1-AU arrival times of coronal mass ejections. J Geophys Res 106: 29207–29218. [NASA ADS] [CrossRef]
  • Gopalswamy N, et al. 2002. Interacting coronal mass ejections and solar energetic particles. Astrophys J Lett 572: L103–L107. [NASA ADS] [CrossRef]
  • Gopalswamy N, et al. 2003. Large solar energetic particle events of cycle 23: a global view. Geophys Res Lett 30: 8015. DOI:10.1029/2002GL016435.
  • Gopalswamy N, et al. 2007. Geoeffectiveness of halo coronal mass ejections. J Geophys Res 112: A06112. DOI:10.1029/2006JA012149. [CrossRef]
  • Gopalswamy N, et al. 2009. The expansion and radial speeds of coronal mass ejections. Cent Eur Astrophys Bull 33: 115–124.
  • Gopalswamy N, et al. 2010. Solar sources of driverless interplanetary shocks. 12th International Solar Wind Conference 1216, pp. 452–458. DOI:10.1063/1.3395902.
  • Gopalswamy N, et al. 2010. A catalog of halo coronal mass ejections from SOHO. Sun Geosph 5: 7–16.
  • Gopalswamy N, et al. 2014. Anomalous expansion of coronal mass ejections during solar cycle 24 and its space weather implications. Geophys Res Lett 41: 2673–2680. DOI:10.1002/2014GL059858. [NASA ADS] [CrossRef]
  • Gopalswamy N, et al. 2015a. The mild space weather in solar cycle 24. ArXiv e-prints: arXiv:1508.01603 [astro-ph.SR].
  • Gopalswamy N, et al. 2015b. The peculiar behavior of halo coronal mass ejections in solar cycle 24. Astrophys J Lett 804: L23. [NASA ADS] [CrossRef]
  • Gopalswamy N, et al. 2015c. High-energy Solar Particle Events in cycle 24. J Phys Conf Ser 642: 012012. [CrossRef]
  • Gosling JT. 1993. The solar flare myth. J Geophys Res 98: 18937–18950. [NASA ADS] [CrossRef]
  • Gosling JT, et al. 1991. Geomagnetic activity associated with earth passage of interplanetary shock disturbances and coronal mass ejections. J Geophys Res 96: 7831–7839. DOI:10.1029/91JA00316. [NASA ADS] [CrossRef]
  • Hundhausen AJ, et al. 1984. Coronal mass ejections observed during the Solar Maximum Mission − Latitude distribution and rate of occurrence. J Geophys Res 89: 2639–2646. [NASA ADS] [CrossRef]
  • Huttunen K, Koskinen H. 2004. Importance of post-shock streams and sheath region as drivers of intense magnetospheric storms and high-latitude activity. Ann Geophys 22: 1729–1738. DOI:10.5194/angeo-22-1729-2004. [CrossRef]
  • Huttunen KEJ, et al. 2002. Variability of magnetospheric storms driven by different solar wind perturbations. J Geophys Res: Space Phys 107: 1121. DOI:10.1029/2001JA900171. [CrossRef]
  • Jaeggli SA, Norton AA. 2016. The magnetic classification of solar active regions 1992–2015. Astrophys J Lett 820.
  • Jang S, et al. 2016. Comparison between 2D and 3D parameters of 306 front-side halo CMEs from 2009 to 2013. Astrophys J 821: 95. DOI:10.3847/0004-637X/821/2/95. [CrossRef]
  • Janvier M, et al. 2014. Mean shape of interplanetary shocks deduced from in situ observations and its relation with interplanetary CMEs. Astron Astrophys 565: A99. DOI:10.1051/0004-6361/201423450. [NASA ADS] [CrossRef] [EDP Sciences]
  • Jian L, et al. 2006. Properties of Stream Interactions at 1 AU During 1995-2004. Sol Phys 239: 337–392. DOI:10.1007/s11207-006-0132-3. [NASA ADS] [CrossRef]
  • Jolliffe IT, Stephenson DB. 2011. Forecast verification: a practioner's guide in atmospheric science. 2nd. ed., Wiley, online library. [CrossRef]
  • Kahler SW. 2001. The correlation between solar energetic particle peak intensities and speeds of coronal mass ejections: Effects of ambient particle intensities and energy spectra. J Geophys Res 106: 20947–20956. DOI:10.1029/2000JA002231. [NASA ADS] [CrossRef]
  • Kahler SW, Vourlidas A. 2014. Do Interacting Coronal Mass Ejections Play a Role in Solar Energetic Particle Events ? Astrophys J 784: 47. DOI:10.1088/0004-637X/784/1/47. [CrossRef]
  • Kilpua EKJ, et al. 2015. Properties and drivers of fast interplanetary shocks near the orbit of the Earth: 1995-2013. J Geophys Res: Space Phys 120: 4112–4125. DOI:10.1002/2015JA021138. [CrossRef]
  • Kivelson MG, Russell CT. 1995. Introduction to space physics, Cambridge University Press, Cambridge, UK, p. 586.
  • Koskinen HEJ, Huttunen KEJ. 2006. Geoeffectivity of coronal mass ejections. Space Sci Rev 124: 169–181. DOI:10.1007/s11214-006-9103-0. [NASA ADS] [CrossRef]
  • Lakshmi MA, Umapathy S. 2013. Coronal mass ejections associated with short and long duration X-ray flares. Astron Soc India Conf Series 10.
  • Lemen JR, et al. 2012. The atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO). Sol Phys 275: 17–40. [NASA ADS] [CrossRef]
  • Lepping RP, et al. 1995. The wind magnetic field investigation. Space Sci Rev 71: 207–229. [NASA ADS] [CrossRef]
  • Lugaz N, Farrugia CJ. 2014. A new class of complex ejecta resulting from the interaction of two CMEs and its expected geoeffectiveness. Geophys Res Lett 41: 769–776. DOI:10.1002/2013GL058789. [NASA ADS] [CrossRef]
  • Lugaz N, et al. 2015. Extreme geomagnetic disturbances due to shocks within CMEs. Geophys Res Lett 42: 4694–4701. DOI:10.1002/2015GL064530. [CrossRef]
  • Lugaz N, et al. 2016. Factors affecting the geoeffectiveness of shocks and sheaths at 1 AU. J Geophys Res: Space Phys 121: 10. DOI:10.1002/2016JA023100. [CrossRef]
  • Lugaz N, et al. 2017. The interaction of successive coronal mass ejections: a review. Sol Phys 292: 64. [CrossRef]
  • McIntosh PS. 1990. The classification of sunspot groups. Sol Phys 125: 251–267. [NASA ADS] [CrossRef]
  • Michalek G, Yashiro S. 2013. CMEs and active regions on the sun. Adv Space Res 52: 521–527. [CrossRef]
  • Michalek G, et al. 2006. Properties and geoeffectiveness of halo coronal mass ejections. Space Weather 4: S10003. [CrossRef]
  • Mierla M, et al. 2010. On the 3-D reconstruction of Coronal Mass Ejections using coronagraph data. Ann Geophys 28: 203–215. DOI:10.5194/angeo-28-203-2010. [NASA ADS] [CrossRef]
  • Möstl C, et al. 2015. Strong coronal channelling and interplanetary evolution of a solar storm up to Earth and Mars. Nat Commun 6: 7135. DOI:10.1038/ncomms8135. [NASA ADS] [CrossRef]
  • Newell PT, et al. 2007. A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables. J Geophys Res: Space Phys 112.
  • Newell PT, et al. 2008. Pairs of solar wind-magnetosphere coupling functions: Combining a merging term with a viscous term works best. J Geophys Res: Space Phys 113. [CrossRef]
  • O'Brien TP, McPherron RL. 2000. An empirical phase space analysis of ring current dynamics: Solar wind control of injection and decay. J Geophys Res 105: 7707–7720. [CrossRef]
  • Odstrcil D. 2003. Modeling 3-D solar wind structure. Adv Space Res 32: 497–506. [NASA ADS] [CrossRef]
  • Ogilvie KW, et al. 1995. SWE, A comprehensive plasma instrument for the wind spacecraft. Space Sci Rev 71: 55–77. [NASA ADS] [CrossRef]
  • Owens MJ, Forsyth RJ. 2013. The heliospheric magnetic field. Living Rev Sol Phys 10. [NASA ADS] [CrossRef]
  • Paassilta M, et al. 2017. Catalogue of 55–80 MeV solar proton events extending through solar cycles 23 and 24. J Space Weather Space Clim 7: A14. DOI:10.1051/swsc/2017013. [CrossRef]
  • Palmerio E, et al. 2017. Determining the Intrinsic CME Flux Rope Type Using Remote-sensing Solar Disk Observations. Sol Phys 292: 39. DOI:10.1007/s11207-017-1063-x. [CrossRef]
  • Papaioannou A, et al. 2016. Solar flares, coronal mass ejections and solar energetic particle event characteristics. J Space Weather Space Clim 6: A42. DOI:10.1051/swsc/2016035. [CrossRef] [EDP Sciences]
  • Qu ZQ. 2008. Prediction of solar flares from a statistical analysis of events during solar cycle 23. ArXiv e-prints.
  • Reames DV. 1999. Particle acceleration at the Sun and in the heliosphere. Space Sci Rev 90: 413–491. DOI:10.1023/A:1005105831781. [NASA ADS] [CrossRef]
  • Reames DV. 2013. The two sources of solar energetic particles. Space Sci Rev 175: 53–92. [NASA ADS] [CrossRef]
  • Richardson IG. 2013. Geomagnetic activity during the rising phase of solar cycle 24. J Space Weather Space Clim 3: A08. DOI:10.1051/swsc/2013031. [CrossRef] [EDP Sciences]
  • Richardson IG, Cane HV. 2010. Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996–2009): catalog and summary of properties. Sol Phys 264: 189–237. DOI:10.1007/s11207-010-9568-6. [NASA ADS] [CrossRef]
  • Richardson IG, Cane HV. 2012. Solar wind drivers of geomagnetic storms during more than four solar cycles. J Space Weather Space Clim 2: A01. DOI:10.1051/swsc/2012001.
  • Robbrecht E, et al. 2009. Automated LASCO CME catalog for solar cycle 23: are cmes scale invariant ? Astrophys J 691: 1222–1234. DOI:10.1088/0004-637X/691/2/1222. [NASA ADS] [CrossRef]
  • Rodriguez L, et al. 2009. Three frontside full halo coronal mass ejections with a nontypical geomagnetic response. Space Weather 7: S06003. DOI:10.1029/2008SW000453. [CrossRef]
  • Scherrer PH, et al. 2012. The helioseismic and magnetic imager (HMI) investigation for the solar dynamics observatory (SDO). Sol Phys 275: 207–227. [NASA ADS] [CrossRef]
  • Schwenn R, et al. 2005. The association of coronal mass ejections with their effects near the earth. Ann Geophys 23: 1033–1059. [NASA ADS] [CrossRef]
  • Shen C, et al. 2014. Full-halo coronal mass ejections: arrival at the earth. J Geophys Res 119: 5107–5116. [CrossRef]
  • Shiota D, Kataoka R. 2016. Magnetohydrodynamic simulation of interplanetary propagation of multiple coronal mass ejections with internal magnetic flux rope: SUSANOO-CME. Space Weather 14: 56–75. DOI:10.1002/2015SW001308. [NASA ADS] [CrossRef]
  • Srivastava N, Venkatakrishnan P. 2004. Solar and interplanetary sources of major geomagnetic storms during 1996–2002. J Geophys Res: Space Phys 109: A10103. DOI:10.1029/2003JA010175. [NASA ADS] [CrossRef]
  • St Cyr OC, Webb DF. 1991. Activity associated with coronal mass ejections at solar minimum − SMM observations from 1984–1986. Sol Phys 136: 379–394. [NASA ADS] [CrossRef]
  • St Cyr OC, et al. 2000. Properties of coronal mass ejections: SOHO LASCO observations from January 1996 to June 1998. J Geophys Res 105: 18169–18186. DOI:10.1029/1999JA000381. [NASA ADS] [CrossRef]
  • Subramanian P, Dere KP. 2001. Source regions of coronal mass ejections. Astrophys J 561: 372–395. [NASA ADS] [CrossRef]
  • Taktakishvili A, et al. 2009. Validation of the coronal mass ejection predictions at the earth orbit estimated by ENLIL heliosphere cone model. Space Weather 7. issn: 1542–7390. [CrossRef]
  • Temmer M, et al. 2017. Preconditioning of interplanetary space due to transient CME disturbances. Astrophys J 835: 141. DOI:10.3847/1538-4357/835/2/141. [CrossRef]
  • Thernisien A, et al. 2009. Forward modeling of coronal mass ejections using STEREO/SECCHI data. Sol Phys 256: 111–130. DOI:10.1007/s11207-009-9346-5. [NASA ADS] [CrossRef]
  • Toth G, Odstrcil D. 1996. Comparison of some flux corrected transport and total variation diminishing numerical schemes for hydrodynamic and magnetohydrodynamic problems. J Comput Phys 128: 82–100. [NASA ADS] [CrossRef]
  • Tsurutani BT, et al. 1988. Origin of interplanetary southward magnetic fields responsible for major magnetic storms near solar maximum (1978–1979). J Geophys Res 93: 8519–8531. DOI:10.1029/JA093iA08p08519. [NASA ADS] [CrossRef]
  • Wang YM, et al. 2002. A statistical study on the geoeffectiveness of Earth-directed coronal mass ejections from March 1997 to December 2000. J Geophys Res: Space Phys 107: 1340. DOI:10.1029/2002JA009244. [CrossRef]
  • Wang Y, et al. 2004. Deflection of coronal mass ejection in the interplanetary medium. Sol Phys 222: 329–343. DOI:10.1023/B:SOLA.0000043576.21942.aa. [NASA ADS] [CrossRef]
  • Watari S. 2017. Geomagnetic storms of cycle 24 and their solar sources. Earth Plan Space 69: 70. DOI:10.1186/s40623-017-0653-z. [CrossRef]
  • Webb DF, et al. 2000. Relationship of halo coronal mass ejections, magnetic clouds, and magnetic storms. J Geophys Res 105: 7491–7508. [NASA ADS] [CrossRef]
  • Weigel RS, et al. 2006. Decision theory and the analysis of rare event space weather forecasts. Space Weather 4: 05002. DOI:10.1029/2005SW000157. [CrossRef]
  • Wimmer-Schweingruber RF, et al. 2006. Understanding interplanetary coronal mass ejection signatures. Report of working group B. Space Sci Rev 123: 177–216. DOI:10.1007/s11214-006-9017-x. [NASA ADS] [CrossRef]
  • Xie H, et al. 2004. Cone model for halo cmes: application to space weather forecasting. J Geophys Res: Space Phys 109: A03109. DOI:10.1029/2003JA010226.
  • Yashiro S, et al. 2004. A catalog of white light coronal mass ejections observed by the SOHO spacecraft. J Geophys Res: Space Phys 109: A07105. DOI:10.1029/2003JA010282. [NASA ADS] [CrossRef]
  • Zhao XP, et al. 2002. Determination of geometrical and kinematical properties of halo coronal mass ejections using the cone model. J Geophys Res: Space Phys 107: 1223. DOI:10.1029/2001JA009143.
  • Zhang J, et al. 2004. A statistical study of the geoeffectiveness of magnetic clouds during high solar activity years. J Geophys Res: Space Phys 109: A09101. DOI:10.1029/2004JA010410. [CrossRef]
  • Zhang J, et al. 2007. Solar and interplanetary sources of major geomagnetic storms (Dst ≤ −100 nT) during 1996-2005. J Geophys Res: Space Phys 112: A10102. DOI:10.1029/2007JA012321.