Technology of lead and lead-bismuth heavy coolants

P.N. Martynov, V.V. Ulyanov, R.Sh. Askhadullin, A.N. Storozhenko

Workshop “Fast neutron reactor coolants”
(Paris, February 19-20, 2013)
Phases of learning of heavy liquid metal coolants

1951
First test circulation facility with Pb-Bi coolant (IPPE)

1963 – First NPS (Design 645) with Pb-Bi coolant

1971 – NPS (Designs 705 and 705K) with Pb-Bi coolant

2013
First in the world civil nuclear reactors with Pb-Bi and Pb coolants are under development
Several methods and instruments of coolant technology have been the first to be applied during startup and operation of NPS of Design 705 (1968 - 1990). This allowed avoid previous emergencies (having place in Design NPS K-27 and test facility 27 BT5). Positive experience available is taken into account in the development of modern methods and instruments of coolant technology for reactor facilities with Pb and Pb-Bi coolants.

Main goals of heavy coolant technology (Pb-Bi, Pb) in civil reactor facilities:

1. Provision of coolant purity and cleanliness of circulation circuit surfaces of tank arrangement to maintain the designed thermal and hydraulic parameters during long-term operation (several tens years when nuclear power plant operates at nominal power and up to 100%).

2. Prevention of corrosion and erosion of structural materials during long-term operation. (several tens years when NPP operates at nominal power and up to 100%).

3. Meeting of modern safety requirements at different phases of reactor facility operation (coolant preparation, RF startup, current operation, repair and reloading, depressurization, deviation of rated operation modes).
Absence of coolant technology instruments can result in negative consequences: slag deposit on heat transfer surfaces, blocking of coolant flow rate along separate circuit sections; high corrosion severity; reduction of facility operation durability, deterioration of radiation situation, etc.

The first submarine “K-27” with Pb-Bi coolant
Startup - in 1963
Accident – in 1968
Cause of accident – absence of coolant technology systems

Result of test facility operation without application of methods and instruments of heavy coolant technology

Slag in pipeline Slag deposit in the circuit during circulation pump tests Slag deposit in heat exchanger

Such circuit surface conditions have not been observed since the introduction of coolant technology systems into circulation circuits.
Modern package of measures in technology of heavy liquid metal coolants

- Coolant preparation (Pb-Bi or Pb) and its loading
- Preliminary out-of-circuit passivation of RF units
- In-circuit passivation of internal surfaces of RF primary circuit
- Coolant technology during repair and reloading
- Coolant and circuit purification from impurities during current operation
- Control and regulation of the coolant oxidation potential
- Purification of cover gas in liquid metal circuit
- Execution of technological operations in cases of rated operation deviation
- Technological operations for coolant recycling

Equipment under development will make available the needed technological measures. It is an important component of safety system during the reactor facility operation at all phases of their life cycle.
Main activity phases of technology of heavy liquid metal coolants (Pb, Pb-Bi)

Phase 1. Selection of coolant initial composition. Technology of coolant preparation for loading into the primary circuit of reactor facility

Phase 2. Coolant technology processes during initial (startup) passivation of structural materials

Phase 3. Coolant technology during current operation of reactor facility

Phase 4. Coolant technology after reactor facility decommissioning
Selection of lead engineering grade for its use as initial coolant

<table>
<thead>
<tr>
<th>Element</th>
<th>C2</th>
<th>C2C</th>
<th>C1</th>
<th>C0</th>
<th>C00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb</td>
<td>99,95</td>
<td>99,97</td>
<td>99,985</td>
<td>99,992</td>
<td>99,9985</td>
</tr>
<tr>
<td>Ag</td>
<td>0,0015</td>
<td>0,002</td>
<td>0,001</td>
<td>0,0003</td>
<td>0,000001</td>
</tr>
<tr>
<td>Cu</td>
<td>0,001</td>
<td>0,002</td>
<td>0,001</td>
<td>0,0005</td>
<td>0,000001</td>
</tr>
<tr>
<td>Zn</td>
<td>0,001</td>
<td>0,002</td>
<td>0,001</td>
<td>0,001</td>
<td>0,0001</td>
</tr>
<tr>
<td>Bi</td>
<td>0,03</td>
<td>0,02</td>
<td>0,006</td>
<td>0,004</td>
<td>0,0005</td>
</tr>
<tr>
<td>As</td>
<td>0,002</td>
<td>0,002</td>
<td>0,0005</td>
<td>0,0005</td>
<td>0,0005</td>
</tr>
<tr>
<td>Sn</td>
<td>0,002</td>
<td>0,001</td>
<td>0,0005</td>
<td>0,0005</td>
<td>0,0005</td>
</tr>
<tr>
<td>Sb</td>
<td>0,005</td>
<td>0,005</td>
<td>0,001</td>
<td>0,0005</td>
<td>0,0001</td>
</tr>
<tr>
<td>Fe</td>
<td>0,002</td>
<td>0,001</td>
<td>0,001</td>
<td>0,001</td>
<td>0,0001</td>
</tr>
<tr>
<td>Mg</td>
<td>0,015</td>
<td>0,003</td>
<td>0,003</td>
<td>0,002</td>
<td>0,0001</td>
</tr>
<tr>
<td>Ca</td>
<td>Not regulated</td>
<td>Not regulated</td>
<td>Not regulated</td>
<td>Not regulated</td>
<td>Not regulated</td>
</tr>
<tr>
<td>Na</td>
<td>Not regulated</td>
<td>Not regulated</td>
<td>Not regulated</td>
<td>Not regulated</td>
<td>Not regulated</td>
</tr>
<tr>
<td>Ti</td>
<td>Not regulated</td>
<td>Not regulated</td>
<td>Not regulated</td>
<td>Not regulated</td>
<td>Not regulated</td>
</tr>
<tr>
<td>Cd</td>
<td>0,0001</td>
<td>0,0001</td>
<td>0,0005</td>
<td>0,0001</td>
<td></td>
</tr>
<tr>
<td>Al</td>
<td>0,0001</td>
<td>0,0001</td>
<td>0,0001</td>
<td>0,0001</td>
<td></td>
</tr>
<tr>
<td>Hg</td>
<td>0,0001</td>
<td>0,0001</td>
<td>0,0001</td>
<td>0,0001</td>
<td></td>
</tr>
<tr>
<td>In</td>
<td>0,0001</td>
<td>0,0001</td>
<td>0,0001</td>
<td>0,0001</td>
<td></td>
</tr>
</tbody>
</table>

Selection criteria:
1. Impact of impurities in lead coolant on radiation situation during RF operation
2. Impact of impurities on nuclear and physical reactor properties
3. Generation rate of Po210 from Bi209 and Pb208 and migration rate of Po210 from RF gas circuit
4. Impact of impurities on structural material corrosion
5. Impact of impurities in the initial coolant on slag formation process

C1 – possible candidate lead grade for the use as coolant
Selection of lead and bismuth engineering grades for their use as components of initial coolant

<table>
<thead>
<tr>
<th>Element</th>
<th>Bi00</th>
<th>Bi01</th>
<th>C1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass fraction, %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>1,8</td>
<td>0,01</td>
<td>99,985</td>
</tr>
<tr>
<td>Ag</td>
<td>0,12</td>
<td>0,00002</td>
<td>0,001</td>
</tr>
<tr>
<td>Cu</td>
<td>0,01</td>
<td>0,0001</td>
<td>0,001</td>
</tr>
<tr>
<td>Zn</td>
<td>0,003</td>
<td>0,0005</td>
<td>0,001</td>
</tr>
<tr>
<td>Bi</td>
<td>98</td>
<td>99,98</td>
<td>0,006</td>
</tr>
<tr>
<td>As</td>
<td>0,0002</td>
<td>0,00007</td>
<td>0,0005</td>
</tr>
<tr>
<td>Sn</td>
<td>Not regulated</td>
<td>Not regulated</td>
<td>0,0005</td>
</tr>
<tr>
<td>Sb</td>
<td>0,005</td>
<td>0,00002</td>
<td>0,0005</td>
</tr>
<tr>
<td>Fe</td>
<td>0,001</td>
<td>0,001</td>
<td>0,001</td>
</tr>
<tr>
<td>Mg</td>
<td>Not regulated</td>
<td>Not regulated</td>
<td>0,002</td>
</tr>
<tr>
<td>Ca</td>
<td>Not regulated</td>
<td>Not regulated</td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>Not regulated</td>
<td>Not regulated</td>
<td></td>
</tr>
<tr>
<td>Ti</td>
<td>Not regulated</td>
<td>Not regulated</td>
<td></td>
</tr>
<tr>
<td>Cd</td>
<td>(0,0001)</td>
<td>0,00005</td>
<td>Not regulated</td>
</tr>
<tr>
<td>Al</td>
<td>Not regulated</td>
<td>Not regulated</td>
<td></td>
</tr>
<tr>
<td>Hg</td>
<td>Not regulated</td>
<td>Not regulated</td>
<td></td>
</tr>
<tr>
<td>In</td>
<td>Not regulated</td>
<td>Not regulated</td>
<td></td>
</tr>
</tbody>
</table>

Selection criteria:
1. Impact of impurities in lead coolant on radiation situation during RF operation
2. Impact of impurities on nuclear and physical reactor properties
3. Generation rate of Po210 from Bi209 and Pb208 and migration rate of Po210 from RF gas circuit
4. Impact of impurities on structural material corrosion
5. Impact of impurities in the initial coolant on slag formation process

Bi00 – possible candidate bismuth grade for the use in Pb-Bi coolant
C1 – possible candidate lead grade
Tank system of coolant loading

Loading system is independent from work at the I circuit of reactor facility

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total coolant volume, m³</td>
<td><2000</td>
</tr>
<tr>
<td>Tank volume, m³</td>
<td>1.5-250</td>
</tr>
<tr>
<td>Coolant volume in tank, m³</td>
<td>1-200</td>
</tr>
<tr>
<td>Number of tanks, pcs.</td>
<td>1-10</td>
</tr>
<tr>
<td>Power of electric circuit, KW</td>
<td><100</td>
</tr>
<tr>
<td>Pump efficiency, m³/h</td>
<td><20</td>
</tr>
</tbody>
</table>

Elements of purification and control system:
- Hydrogen purification.
- Oxidizing refining.
- Filtration.
- Sampling, oxygen thermodynamic activity control.
Control and regulating systems of oxygen potential

1. Provision of initial corrosion resistant passivation of structure material surfaces.

2. Maintenance of the coolant oxygen potential during current operation of reactor facility.
Solid phase dosing method (regulating) of dissolved oxygen in coolant

Method options:
\[C_{[O]} = 1 \cdot 10^{-3} \div 1 \cdot 10^{-11} \text{% mas.} \]

\[\text{<PbO>} \rightarrow \{\text{Pb}\} + [\text{O}] \]

\[Q = K_p \cdot S \cdot (C_s - C_{[O]}), \]
\[K_p = f (T, \text{Re}, C_{[O]}), \]

where \(K_p \) – dissolution rate factor;
\(S \) – dissolution surface;
\(C_s \) – oxygen saturation concentration;
\(C_{[O]} \) – oxygen concentration in dissolved zone

\[4[\text{O}] + 3<\text{Fe}> \rightarrow <\text{Fe}_3\text{O}_4> \]
\[4[\text{O}] + 3[\text{Fe}] \rightarrow <\text{Fe}_3\text{O}_4> \]
Dependence of dissolution rate factor of PbO spheroids on temperature and rate of lead coolant

\[Q_{[O]} = K_p \cdot (1-a_{[O]}) \cdot S_P, \quad \left[g_{[O]}/h \right], \quad (a_{[O]} \ll 1) \]

for \(\text{Re}=1000 \div 5000, \text{Sc}=30 \div 200 \)

\[K_p = Sh \cdot D/l \cdot C_s \cdot \rho \cdot 360, \quad \left[g_{[O]}/(cm^2 \cdot \text{PbO} \cdot h) \right] \]

\[Sh = 8.7 \cdot 10^{-4} \cdot \text{Re}^{1.4} \cdot \text{Sc}^{0.8} \]

\[Sh = \frac{\beta \cdot l}{D} \quad \text{Sherwood number}; \quad \text{Re} = \frac{w \cdot l}{v} \quad \text{Reynolds number}; \]

\[Sc = \frac{v}{D} \quad \text{Schmidt number}; \quad l = \frac{2 \cdot \varepsilon \cdot d_{sph}}{3 \cdot (1-\varepsilon)} \quad \text{characteristic dimension, m} \]

\(\beta \) – mass transfer coefficient, m/s;
\(a_{[O]} \) – oxygen thermodynamic activity;
\(\rho \) – lead density, kg/m\(^3\);
\(C_s \) – oxygen saturation concentration in lead, in mass fractions of 1;
\(v \) – kinematic viscosity, m\(^2\)/s;
\(D \) – oxygen molecular diffusion coefficient in lead, m\(^2\)/s;
\(\varepsilon \) – porosity of PbO spheroid layer (accepted as 0.4 for layer of spherical particles);
\(d_{sph} \) – spheroid diameter, m;
\(S_P \) – dissolution surface of PbO, cm\(^2\).
Dependence of PbO spheroid dissolution rate factor on coolant temperature and rate
Control and regulating of oxygen potential in heavy liquid metal coolant

Oxygen is needed for generating and maintenance of strong protective coating on the surfaces of structural materials. Excess of oxygen in the coolant results in slag deposition. Low oxygen can result in development of liquid metal corrosion.

Up to several tens thousand square meters of cover is needed for structure materials of primary circuit of NPP in the initial operation period.

\[C_{[O]} = f(T, E) \]

\[4[O] + 3<\text{Fe}> \rightarrow <\text{Fe}_3\text{O}_4> - \text{surface} \]

\[4[O] + 3[\text{Fe}] \rightarrow <\text{Fe}_3\text{O}_4> - \text{flow rate} \]

\[a = \frac{C}{C_S} \]

\[\lg C_s(\% \text{ mas.}) = 1,2 - 3400 / (T + 273) \]

\[E = \frac{R \cdot T}{n \cdot F} \cdot \ln\left(\frac{a_{[O] \text{ e.c.}}}{a_{[O]}}\right), \]

- \(n \) – number of electrons taking part in reaction;
- \(F \) – faraday constant;
- \(R \) – universal gas constant;
- \(T \) – temperature, K;
- \(a_{[O]} \) – oxygen activity in coolant;
- \(a_{[O] \text{ e.c.}} \) – oxygen activity in reference electrode.
Principle diagram of the oxygen potential regulating system in HLMC
Types of mass-transfer apparatus to control the coolant composition in circulation circuits

With in-built electric heater

With own axial-flow pump

With airlift pump
Design of sensors for oxygen concentration control in coolant

- Working medium – Pb-Bi;
- Range of oxygen TDA – 10^{-6} – 1;
- Limit of permissible ratio error of sensor’s EMF – 10%;
- Range of working temperature – 350- 650°C;
- Working pressure – 0 – 1.5 MPa;
- Coolant rate in the main circuit – 0 - 1 m/s;
- Speed of coolant temperature variation – up to 100°C/s;
- Vibration and water hammers;
- Operational life – up to 30 000h.

\[E = \frac{R \cdot T}{n \cdot F} \cdot \ln \left(\frac{a_{[O]} \varepsilon.c.}{a_{[O]}} \right), \]

Where:
- \(a_{[O]} \) – oxygen activity in coolant;
- \(a_{[O]} \varepsilon.c. \) – oxygen activity in reference electrode.

\[a = \frac{C}{C_s} \]

\[\lg C_s(\%_{\text{mass}}) = 1.2 - 3400 / (T + 273) \]
Example of the oxygen potential control in coolant during long operation life at test facility CM-2 (SSC RF - IPPE) in 2000 – 2004
Coolant purification and surface cleaning from deposits with hydrogen-containing gas mixtures

\[(H_2) + <\text{PbO}> \rightarrow (H_2O) + \{\text{Pb}\}\]
\[(H_2) + [\text{O}] \rightarrow (H_2O)\]

Slag deposit in circuit during tests of MCP in МОЦКТИ (Moscow branch of the Central boiler-turbine Institute) not using CTS (1972, records)

Circuit section with the use of CTS (after introduction of cleaning system)

Periodical coolant purification and cleaning of circuit surfaces from deposits with hydrogen-containing gas mixtures (1 per 5 – 10 years)
Experimentally proved disc gas handler as the main device for hydrogen purification

Prototypes of gas introduction devices and their drawbacks:

- **Nozzle extension**
 - Problems with gas dispergregation

- **Ejector**
 - Forced flow is needed in pipes

Accepted option – disc gas handler

- Electric motor
- Cooling
- Fastening to circuit
- Circuit gas volume: \(\text{H}_2 - \text{H}_2\text{O} - \text{Ar} \)
- Hollow shaft

Advantages:
1. Small bubbles generation (less than 100 \(\text{mkm} \)) with effective delivery to specified section of circuit
2. Possibility of assembling in circuit of any arrangement
3. Simple design
Filtration of HLAC

Continuous cleaning filter is intended for HLAC purification from mechanical impurities generated in primary circuit as result of HLAC interaction with constructional steels.

Filter operation principle is based on continuous retention of suspended impurities independently on their nature, concentration and sizes in the volume of filtering material.

Filter can be improved to make possible HLAC simultaneous purification from suspended polonium compounds.

Filtering materials of space-occupying type

- Fiber glass MKTT-2,2A
 - SiO₂ >95%,
 - Fiber diameter ~ 6mkm,
 - Heat resistance - 450°C

- Metal fabric
 - thickness 2-6 mm,
 - Fiber diameter - 40mkm,
 - Heat resistance - up to 600°C

- Fused corundum
 - (screened size Al₂O₃)
 - Granular size - 0.8-1.2 mm,
 - Heat resistance >1000°C
Purification of cover gas from aerosols of heavy liquid metal coolants

Aerosol size-consist and concentration

(Evaporation at 600 °C), particle/l

<table>
<thead>
<tr>
<th>Particle diameter</th>
<th>Particle count</th>
</tr>
</thead>
<tbody>
<tr>
<td>>3.0μm</td>
<td>1.0E+01</td>
</tr>
<tr>
<td>0.7-2.0μm</td>
<td>1.0E+02</td>
</tr>
<tr>
<td>0.5-0.8μm</td>
<td>1.0E+03</td>
</tr>
<tr>
<td>0.3-0.4μm</td>
<td>1.0E+04</td>
</tr>
<tr>
<td><0.3μm</td>
<td>1.0E+05</td>
</tr>
</tbody>
</table>

Two-stage filter for gas purification during engineering operations in gas circuit

<table>
<thead>
<tr>
<th>Name</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated capacity, not less than, m³/h</td>
<td>10</td>
</tr>
<tr>
<td>Air flow resistance, not more than, Pa</td>
<td></td>
</tr>
<tr>
<td>- initial</td>
<td>300</td>
</tr>
<tr>
<td>- maximum permissible</td>
<td>1500</td>
</tr>
<tr>
<td>Purification efficiency for particles d≥0.3μm, not less than, %</td>
<td>99.9</td>
</tr>
</tbody>
</table>

Experimental research of gas filter at test facility СИАФ-1 (test facility for aerosol filter testing)
$\{\text{Pb-Bi, Pb}\} + (H_2O) \leftrightarrow \{\text{Pb-Bi, Pb}\} + (H_2) + [O]$

$\Delta Z = -R \cdot T \cdot \ln \left[\frac{a_{\text{Pb}}}{a_0} \cdot \left(\frac{p_{H_2O}}{p_{H_2}} \right)^{1} \cdot \left(\frac{p_{H_2}}{p_{H_2O}} \right) \right]$

$[O]$ – dissolved oxygen

$a_{[O]} = \frac{C_{[O]}}{C^s_{[O]}}$;

where $a_{[O]}$ – oxygen activity;

$C_{[O]}$ – current concentration of dissolved oxygen;

$C^s_{[O]}$ – concentration of melt saturation with dissolved oxygen;

ΔZ – actual variation of the reaction Gibbs free enthalpy;

T – temperature, K;

$\left(\frac{p_{H_2O}}{p_{H_2}} \right)$ – ratio of partial water vapor and hydrogen in equilibrium with coolant with dissolved oxygen activity $= 1$;

$\left(\frac{p_{H_2}}{p_{H_2O}} \right)$ – ratio of partial hydrogen vapor and water vapor in initial water.
Thermodynamics of HLMC interaction with “H₂–H₂O” mixtures

\[(\text{H}_2\text{O}) + \{\text{Pb-Bi}\} \leftrightarrow (\text{H}_2) + [\text{O}] + \{\text{Pb-Bi}\}\]

Diagram E – T – C – \(P_{\text{H}_2\text{O}}/P_{\text{H}_2}\)
for Pb-Bi melt

\[E \,(V) = 0,13–1,5 \cdot 10^{-5} \cdot T \cdot (1+6,6 \cdot \text{lg} \,a_{\text{O}}) – \text{Pb}\]
\[E \,(V) = 0,09–1,8 \cdot 10^{-5} \cdot T \cdot (1+5,6 \cdot \text{lg} \,a_{\text{O}}) – \text{Pb-Bi}\]

\[C_{\text{O}} = f \,(V_{\text{HLMC}}, V_{\text{gas}}, T_{\text{cold}}, T_{\text{hot}}, F_{\text{cold}}, F_{\text{hot}}, \ldots)\]

Thermodynamic properties of “H₂ – H₂O” and HLMC are different. Different interaction scenarios (oxidation, deoxidation, equilibrium) are possible during their joint transportation along different temperature zones of circulation.
Pb-Bi coolant interaction with water

\[(\text{H}_2\text{O}) + \{\text{Pb-Bi}\} \rightarrow (\text{H}_2) + [\text{O}] + \{\text{Pb-Bi}\}\]

- Working area of direct contacting evaporator apparatuses
- Oxygen regulation in coolants of reactor facilities БРЕСТ and СББР
- Intermediate area
- Hydrogen production area
- Area of possible corrosion of constructional steels

\[T = 600^\circ \text{C}\]

\[a = \frac{C_o}{C_{os}}\]

- \(a\) – oxygen activity in Pb – Bi
- \(C_o\) – oxygen concentration
- \(C_{os}\) – saturation concentration of Pb – Bi with oxygen
Heating and evaporation of liquids during direct contacting liquid metal heating

Version: Water to melt

1 – body; 2 – bubbler; 3 – guiding ways; 4 – swirler devices; 5 – water supply line; 6 – sediment discharge; 7 – sediment; 8 – LMC surface; 9 – impingement plates; 10 – cyclone; 11 – high-temperature filter; 12 – magnetostrictor; 13 – level sensor; 14 – conveyor; 15 – valve; 16 – storage device; 17 – heater

Version: melt to water

Clean steam
Aerosol filter
(plasma-chemical membrane)
steam with aerosol
Dry sediment
Pure condensate (drinking water, fuel, etc.)
Coolant management after reactor facility decommissioning

The following concept is under consideration:

For Pb-Bi cooled reactor facilities:
- coolant purification from radionuclides in reactor facility;
- coolant unloading;
- recycling.

For lead cooled reactor facilities:
- coolant unloading through filter to special tanks;
- purification;
- recycling.
Summary

1. Problems of heavy coolant technology are solved within the whole life cycle of reactor facility. Coolant technology includes R&D to substantiate, design and develop the methods and instruments as well as direct execution of processes during the coolant preparation, startup of reactor or research facilities, their operation and decommissioning.

2. Selection of needed methods and instruments of heavy liquid metal coolant technology for reactor facilities under development is based on 62-years experience of Pb-Bi coolant investigation and results of R&D taking into account specificity of new generation of reactor facilities.

3. Methods and instruments of coolant technology under development include the hydrogen purification system of coolant and circuit from slag-making impurities, system of dissolved oxygen control in coolant for steel corrosion protection, filtering system for coolant and cover gas, coolant purification system from radioactive impurities, coolant control system both in reactor and out-of-reactor conditions and the other systems.

4. Methods and instruments of coolant technology under development provide thorough coolant preparation prior to its loading and during the loading to reactor facility circuit, execution of package of measures in startup modes and minimal diversion of RF personnel to the coolant technology process execution during the operation.
Thank you for attention.

I will invite you to a fourth international conference "Heavy Liquid Metal Coolants" (October, 2013, Obninsk) (mail to pmartinov@ippe.ru)
Polonium Po210 problem in NPP circuits with HLMC

Po210 GENERATION: reaction on Bi nuclei with radioactive β-decay of Bi210g and next generation of α-radioactive Po210:

\[
\begin{align*}
209 \text{Bi} + n &\rightarrow 210\text{g Bi} \\
\beta^- &\rightarrow 210\text{Po} \\
T_{1/2} &= 5.013 \text{ days} \\
\alpha &\rightarrow 206\text{Pb} \\
T_{1/2} &= 138.8 \text{ days}
\end{align*}
\]

RADIOACTIVITY: Po210 is pure α-emitter in practice, E\textsubscript{α} = 5.3MeV, its activity can be 4·1010 Bq/kg (1.08 Ci/kg). By the end of run of CBEP-100 (50 thous. hours) total Po210 activity in coolant will become 3.2·1016 Bq (8.64·105 Ci), specific activity – 1.7·1011 Bq/kg (4.5 Ci/kg), which corresponds to about 1mg of Po210 per 1 kg of coolant (10-6 rel.units); total activity in gas system is 5.7·1010 Bq (1.54Ci), and concentration activity – 6.0·105 Bq/m3.

CONDITION of Po210 IN HLMC: Po210 is mostly molten in the form of lead polonide PbPo, its small amount only (less than 1%) transfers to gas phase ГС in the form of radioactive aerosols; mentioned condition of Po210 in melt and gas allows its removal with the help of appropriate filters.

HAZARD: there is no hazard from Po210 under normal operation conditions of NPP and tight circuit. Hazard appears during inter-circuit leaks, primary circuit depressurization during scheduled repair, nuclear fuel reloading or emergency spillage of radioactive coolant into attended room. Calculation shows that in condition of emergency leak from gas system with relative constant speed 1 h-1 the level of Po210 aerosol concentration activity in the air of reactor box is ~140 Bq/m3, which is about 50 times exceeds the maximum permissible level for personnel.

TECHNICAL MEASURES: execution of comprehensive program accounting Po210 radiation danger in all NPP modes as well as initial events and different scenarios of beyond design basis accidents; development of thermally and chemically stable sorbents for non-reversible extraction of Po210 from HLMC with the use of experience accumulated at SSC RF – IPPE and other institutions; development of appropriate sorption-filtering devices for Po210 extraction from coolant and reactor gas vessel and local storage; development of Po210 α-radioactive detector.

FOREIGN INVESTIGATION: increased attention is paid to polonium problem in NPP with lead-bismuth coolant abroad, especially in Japan. Extensive research of coolant purification from polonium with selection of filtering materials are carried out at Technological Institute of Tokyo under supervision of professor Toru Obara. Several papers devoted to this problem were recently published in international journals.
Calculation assessment of polonium activity in reactor room (RR) of СВБР-100 reactor facility under design and beyond design basis accidents

- **Design basis accident**: loss of tightness of gas system with constant relative speed of gas leak 1 h⁻¹
- **Beyond design basis accident**: full pipe break of evaporator module (large inter-circuit leak) with simultaneous gas system emergency depressurization

- **Concentration activity of Po²¹⁰ in RR air permissible for personnel** 2.7 Bq/m³
- **Maximum concentration activity of Po²¹⁰ in RR air under design basis accident** 1.4 · 10² Bq/m³
- **Maximum concentration activity of Po²¹⁰ in RR air under design basis accident and availability of purification - HLMC and gas filters** 1.4 Bq/m³
- **Maximum concentration activity of Po²¹⁰ in RR air under beyond design basis accident** 2.8 · 10² Bq/m³
- **Maximum concentration activity of Po²¹⁰ in RR air under beyond design basis accident and availability of purification - HLMC and gas filters** 2.8 Bq/m³