DE LA RECHERCHE À L'INDUSTRIE

www.cea.fr

QUANTIFICATION DE LA RADIOLYSE DES MATÉRIAUX POLYMÈRES CONTENUS DANS LES COLIS DE DÉCHETS MAVL

T. ADVOCAT, S. ESNOUF, V. DAUVOIS, M. FERRY, N. CARON (CEA) Y. NGONO-RAVACHE (CIMAP) F. COCHIN (AREVA-NC)

9 Octobre 2014

DE LA RECHERCHE À L'INDUSTRI

LES ENJEUX DU COMPORTEMENT DES COLIS MAVL de déchets radiolysables

DÉCHETS POLYMÈRES CONDITIONNÉS DANS LES COLIS MAVL POUR CIGEO

~ 40 000 colis (~ 17% de la population de colis MAVL) contiennent ~ 3600 t de matériaux organiques

Distribution (%) des matériaux organiques (D'après ANDRA, Laville, 2011).

MODÈLE OPÉRATIONNEL - STORAGE

PHÉNOMÉNOLOGIE SOUS IRRADIATION DES POLYMÈRES

Caractéristiques

Sous irradiation :

- **—** Rupture de liaisons chimiques
- Création de radicaux, scission, réticulation
- Rôle capital de l'atmosphère (en présence d' O_2 , formation d'espèces oxydées :
 - alcools.
 - cétones, aldéhydes, acides
- Emission systématique de gaz de radiolyse

DE LA RECHERCHE À L'INDUSTRI

ACQUISITIONS EXPÉRIMENTALES : UN PANEL IMPORTANT DE MOYENS MOBILISÉS

Mobilisation des compétences de la communauté scientifique nationale du CEA et du CNRS, et des outils industriels d'irradiation

Auto-irradiation α empilement PuO₂-PP

Colis réel de déchets instrumenté

Irrad. externe γ études d'émission gazeuse ex situ

Irrad. externe (C eq. α , e-) études d'émission gazeuse in situ

Irrad. externe (I.L. eq. α) études d'émission gazeuse ex situ

Irrad. externe (C eq. α) pour pré-irradiation

PUR Manche EPR joint EVA Pirelli Hypalon

Études de lixivation

Rendement radiochimique de production de gaz X : G(X) mole/J

- Le Paramètre important est la dose absorbée = quantité d'énergie absorbée par unité de masse du polymère
- Nombre de molécules produites ou détruites pour 100 eV d'énergie absorbée

G(X) mole/J = f(rayonnement (α , β , γ , n), oxydation , T)

$$P_{gaz}(X) = P_{absorbée (J/s)} \times G(X)_{mole/J}$$

$$TEL = dE / dx$$

TEL

- Effet de Transfert d'Energie Linéique : dépôt d'énergie
 - **Faible pour** γ , β
 - **—** Fort pour α

Bases de données

DE LA RECHERCHE À L'INDUSTRIE

BASE DE DONNÉES PRELOG : VOLET GAZ

G(H₂) PE_{max}= 3,9 10⁻⁷ mol/J CEA/DEN-Direction Assainissement et Démantèlement Nucléaire DE LA RECHERCHE À L'INDUSTRI

(~ 3500 données de rendement de radiolyse)

CEA/DEN-Direction Assainissement et Démantèlement Nucléaire

Evolution du G(H₂) avec la dose

Exemple du PE soumis à des irradiations de simulation avec des ions lourds

Dans la majorité des cas :

Diminution des rendements $G(H_2)$ et $G(-O_2)$ quand la dose augmente

Création d'insaturations (doubles liaisons) ayant un effet protecteur

INTERACTIONS RAYONNEMENT α /POLYMÈRE

Code 3DIP

- Calcul du Profil de dose déposée dans la matière
- Evolution temporelle de la composition chimique de la cible : diminution de la formation de gaz de radiolyse

CONFRONTATION CALCULS – MESURES A L'ÉCHELLE DES COLIS RÉELS

Exemple Colis CEA de 870 L : déchets technologiques contaminés α (PuO₂) cimentés

L'estimation du modèle est conservative et réaliste vis-à-vis des mesures unitaires réalisées sur colis actifs réels

DÉTERMINATION DES PRODUITS DE DÉGRADATION HYDROSOLUBLES (PDHS)

Questions:

- Quelle est la quantité de PDHs générée par radiolyse?
- Les PDHs ont-ils une capacité de complexation des actinides en phase aqueuse ?
- La migration des actinides est-elle favorisée après Complexation dans l'argilite du stockage ?

Expérience de lixiviation d'échantillons irradiés en eau cimentaire

EVOLUTION DE LA FRACTION SOLUBLE EN COMPOSÉS ORGANIQUES

Relâchement

- Effet combiné Hydrolyse / Radiolyse
- Evolution fraction soluble = f(temps)
 - Relâchement rapide (I)
 - Stabilisation (II)

L'évolution de la fraction soluble dépend du taux d'oxydation du polymère et de l'influence de l'hydrolyse basique du polymère dégradé

QUANTIFICATION DE LA FRACTION SOLUBLE : HYDROLYSE & RADIOLYSE

L'hydrolyse basique est prépondérante pour :

PP

Poly(ester-uréthanes) : hydrolyse des fonctions esters

L'effet couplé de la radiolyse et de l'hydrolyse

- Est important pour les polymères industriels à faible taux d'oxydation de type cellulose, PUR, …
- Est modéré à faible pour les polymères industriels de type PVC, Néoprène,

EFFET DE L'IRRADIATION SUR LA CONCENTRATION EN ACIDES EN SOLUTION

Effet de la dose

- A partir de 6 MGy, le relâchement des PDHs tend à saturer
- Quand la dose augmente, les PDHs sont plus oxydés (fonction [diacides] croit)

Effet de la nature de l'irradiation

L'irradiation γ génère plus de PDH que l'irradiation α

DE LA RECHERCHE À L'INDUSTRIE

Objectif : Etudier le potentiel complexant des PDH vis-vis des actinides Méthodologie : quantifier la dissolution d'un hydroxyde d'europium (analogue chimique des actinides(III)) dans une solution de lixiviation cimentaire

Résultat : **augmentation limitée de la solubilité en Eu** lorsque la concentration en carbone soluble est supérieure à ~1 mol_C/L (au-delà, limitation de la solubilité des composés organiques)

MIGRATION DES PDH DANS L'ARGILITE DU SITE DE STOCKAGE

Objectif

 Quantifier le transfert des radionucléides en présence de molécules organiques (Collaboration Andra/CEA/AREVA)

Compréhension expérimentale : carottes de roche rééquilibrée avec une eau représentative de l'eau porale

- Migration par Exclusion Anionique
- Rétention significative des molécules organiques sur la surface de l'argilite : Rd=1-30 L/kg

CONCLUSIONS ET PERSPECTIVES : VOLET TERME SOURCE GAZ ET PDH

Lois de comportement des matériaux polymères sous rayonnement

Modèle Opérationnel de calcul de dégazage de colis réels

G_(X): BdD PRELOG de rendement de dégazage des polymères

P_{absorbée} : Outils de calcul du dépôt d'énergie des émetteurs α dans les polymères.

Outil logiciel CEA/AREVA-NC «STORAGE»

- Estime la production de gaz de radiolyse dans un colis de déchets existant ou prospectif
- Alimente les études de sûreté sur le comportement des colis de déchets des usines et labos, en entreposage, au cours des transports, …
- Est utilisable par des clients industriels, les Autorités de Sûretés, l'Andra, etc...

Quantification et comportement des PDHs

Complexation modérée des actinides et rétention sur l'argilite

Etudes en cours : Evaluer l'impact sur la migration d'une fraction d'actinides complexés par les PDHs

Supports additionnels

CEA/DEN-Direction Assainissement et Démantèlement Nucléaire

VALIDATION DES IRRADIATIONS DE SIMULATION

GANIL

<u>Définition des conditions d'irradiation de simulation des particules α avec</u> <u>des ions lourds</u>

LES DÉCHETS TECHNOLOGIQUES À BASE DE MATÉRIAUX ORGANIQUES

Matériau industriel= matériau de base +charges minérales, plastifiants...

Matériau de base : résine PVC

Matériel : manche vinyle

Matériau industriel : PVC plastunion

Composition du PVC plastunion :

- 63% PVC
- 31% de phtalates
- 2,3% d'acide stéarique, calcium stéarate, talc
- 1,4% de dérivés organiques de métaux

COLIS 870L α Pu - FABRIQUES SUR L'INB 37

Caractéristiques radiologiques :

- Activité α moyenne : 191 GBq (production depuis 1990)
- Activité βγ moyenne par colis : 6,5 GBq (sur la production depuis 1990)
- Débit de dose au contact du colis ≤ 2 mGy/h
- Contamination surfacique labile <0,2 Bq/cm2 en α</p>
- Contamination surfacique labile < 1 Bq/cm2 en βγ

Caractéristiques intrinsèques de la matrice :

- Résistance à la compression à 28 jours > 35 MPa
- Résistance à la traction par fendage à 28 j > 3,5 MPa
- Retrait à 28 jours < 800 µm/m</p>
- Perte de masse à 28 j < 120 kg/m3

Puissance thermique :

Pth moyenne = 0,23 W par colis

Caractéristiques physiques :

- Résistance à la chute (essai à 5m)
- Résistance au gerbage (gerbage sur 4 niveaux)
- Perméabilité aux gaz (pas de surpression)
- Production d'hydrogène < 10L/an et par colis</p>

Contraintes entreposage CEDRA

PDHS : BILAN OPÉRATIONNEL QUANTITÉ MAX. D'ACIDES FORMÉS

exprimé en g d'acide par kg de polymère	Acide formique	Acide acétique	Acide oxalique	Acide glutarique	Acide adipique	Acide phtalique	Acide iso- saccharini que
poly(éther-uréthane)	36,2	7,4	1,8	8,2	0		
poly(ester-uréthane)	12,6	10,5	6,7	16,1	510		
PP*	19,0	25,8	n.d.	30,5	0		
EPR pur	19,0	17,8	2,3	1,2	1,8		
EPR industriel	4,6	3,3	0,6	5,9	0		
EPDM**	11,6	28,5	42,2	62,6	68,2		
Cellulose**	n.d.	n.d.	n.d.	n.d.	n.d.		45,8
PC industriel*	8,2	4,9	n.d.	9,2	0		
PVC pur***	12,2	7,5	55,5	25,5	0		
PVC industriel	21,3	14,7	14,1	7,4	0	123	
Hypalon®	3,5	1,6	2,9	15,2	69,4		
Néoprène®	7,5	1,8	5,6	2,5	54,9		
PVDF pur	1,9	2,7	1,7	0	0		
Viton®	1,2	0	8,2	3,4	0,9		

* : Calculé à partir des irradiations avec des ions lourds et des lixiviations dans l'eau cimentaire. ** : Calculé à partir des irradiations avec des ions lourds et des lixiviations dans l'eau pure. *** : Calculé à partir des irradiations avec des rayonnements GAMMA et des lixiviations dans l'eau pure. n.d. : non déterminé Cea

TESTS LIXIVIATION POLYMÈRES IRRADIÉS

<u>Evolution fractions solubles = f(temps) – Lixiviations en</u> <u>eau cimentaire – Dose intégré 4 MGy</u>