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ADAPTIVE OPTICS FEEDBACK CONTROL

J.-P. Folcher1, M. Carbillet1, A. Ferrari1 and A. Abelli1

Abstract. This paper concentrates on the control aspects of Adaptive
Optics (AO) systems and includes a prior exposure to linear control
systems from the “classical” point of view. The AO control problem
is presented and the well-established optimized modal gain integral
control approach is discussed. The design of a controller from a mod-
ern control point of view is addressed by means of a linear quadratic
Gaussian control methodology. The proposed approach emphasizes the
ability of the adaptive optics loop to reject the atmospheric aberration.
We derive a diagonal state space system which clearly separates the dy-
namics of the plant (deformable mirror & wavefront sensor) from the
disturbance dynamics (atmospheric model). This representation facil-
itates the numerical resolution of the problem. A frequency analysis is
carried out to check performance and robustness specifications of the
multiple-input multiple-output feedback system. The effectiveness of
the approach is demonstrated through numerical experiments.

1 Introduction

Among its applications, adaptive optics systems can be used to reduce the ef-
fects of atmospheric turbulence on images taken from ground-based telescopes.
A Deformable Mirror (DM) is used to spatially compensate the incoming (atmo-
spheric) wavefront as close as possible to a theoretical plane wavefront. The shape
of the DM is adjusted in real time using the measurements of a Wavefront Sensor
(WFS) which provides the local slopes of the residual wavefront. The AO system
imaging performance depends mainly on the WFS and DM characteristics and on
the control algorithm efficiency. For an overview of AO, the reader may consult the
book of Roddier (1999) and the companion chapter of Carbillet in this book. This
paper concentrates on the control aspects of AO systems. Our intended audience
includes researchers and research students in astrophysics and in signal processing
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who are not familiar with control engineering. In this context the reader will ben-
efit from a prior exposure to linear control systems from the “classical” point of
view. This is the goal of the Section 2 which is an introduction of a lot of funda-
mental topics in control engineering such as feedback, Laplace transform, transfer
function, Bode and Nyquist plots (Franklin et al. 1991; Dorf & Bishop 1998) which
are illustrated with case studies. In this section we also expose some elements for
digital controlled systems such as sampled-data systems, z-transform and discrete
time transfer function (Franklin et al. 1990; Astrom & Wittenmark 2011) and we
present basic case studies. Some paragraphs of the tutorial are selected passages
or strongly inspired from the cited books. For instance the automobile cruise con-
trol example is presented in the book of Franklin et al. (1991). Our goal is not
to teach the reader how to design linear controllers (several existing books do a
good job for that) but rather to give a comprehensive understanding of feedback
systems.

The third section is dedicated to the exposure of the Adaptive Optics control
problem. The AO system is modeled as a multiple-input multiple-output (MIMO)
feedback system using the “classical” control framework. A first category of control
strategies: the optimized modal gain integral control (OMGI) proposed by Gendron
& Léna (1994) and its improvements is discussed, see (Dessenne et al. 1998). A
static decoupling matrix is inserted in the feedback loop in order to divide the
MIMO control problem in a series of single-input single-output (SISO) control
problem. The design parameters are chosen to ensure stability and a trade-off
between disturbance rejection and measurement noise amplification. The main
quality of the optimized modal gain integral control, which is the current adaptive
optics control system is to express some of the controller’s signals in the modal
base which facilitates the physical interpretation. Furthermore it is intrinsically
a frequency approach: the analysis of the AO feedback system’s performance is
straightforward. The method can be used when the knowledge of the disturbance
temporal dynamics is weak.

The last section contains the design of a controller from a modern control
point of view (Kulcsár et al. 2006; Looze 2006). This approach was introduced
for the first time by Paschall et al. (1991), which explicitly tries to minimize the
mean-square residual wavefront error (and consequently maximize the imaging
performance index as the Strehl ratio). This problem can be formulated as a
linear quadratic Gaussian (LGQ) control problem, and the solution consists in
the optimal state-feedback control of the DM and the optimal estimation of the
atmospheric wavefront. The proposed approach emphasizes the ability of the LQG
controller loop to reject the atmospheric aberration. We propose a generic second
order autoregressive model to capture the main features of the aberrated wavefront.
We derive a diagonal state space system which clearly separates the dynamics of
the plant (DM & WFS) from the disturbance dynamics (atmospheric model).
Thus, we explicitly consider a disturbance rejection control problem, see (Bitmead
et al. 1990), which facilitates the numerical resolution of the estimation problem:
the order of the estimation discrete time algebraic Riccati equation is reduced.
This point is important from a practical point of view for the new generation of
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AO systems exhibiting a large number of modes where control laws have to be
designed in accordance with real time constraints. Numerical experiments using
the Software Package CAOS have been conducted to demonstrate the effectiveness
of the proposed approach.

2 Classic feedback control: A tutorial

2.1 Definitions & feedback framework

2.1.1 What is automatic control?

Control is a general concept which refers to a specific interaction between two
(or more) devices. Driving an automobile is a typical example: the driver has to
control the vehicle to reach a given destination. In such a case, the car is manually
controlled. At the opposite, automatic control only involves devices: this is the
case of automobile cruise control. The rate flow of the fuel/air mixture is adjusted
in real time depending on a speedometer measure to obtain a given speed.

2.1.2 What is feedback?

The main idea in control is feedback control where the variable/signal being con-
trolled (speed, temperature...) is measured by a sensor and fed back to the process
in order to influence the controlled signal. This feedback idea can be illustrated
for the automobile cruise control and is described by a component block diagram
in Figure 1. Main devices of the system are represented by blocks and arrows show
interaction from one device to another.

Fig. 1. Component block diagram of automobile cruise control.

Qualitatively, the temporal behavior of this controlled system can be ana-
lyzed. Suppose that when an air-fuel mixture is injected in the engine, the actual
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measured speed is below the desired speed. Then, the cruise controller will in-
crease the air-fuel mixture flow rate causing an increase of the engine speed and
consequently the body vehicle speed. If the actual speed is higher than the desired
speed then the cruise controller will decrease the air-fuel mixture flow rate in order
to reduce the body vehicle speed. For this example, the generic components of a
classic feedback loop are shown in Figure 1. The main component is called the sys-
tem (or plant or process) where one variable/signal is to be controlled or regulated.
In our example the plant is the automobile body and the controlled/regulated out-
put is the vehicle speed. The disturbance input is the road grade which acts on
the system. The actuator is the component that influences the regulated variable:
here the actuator is the engine. To obtain a feedback, we need to deliver to the
controller a measured output which is provided by the sensor. In this case, the
sensor is the speedometer. The role of the controller is to generate, using the
reference input and the measured output, the control input. Feedback control
properties can be demonstrated using quantitative analysis of a simplified model
of the automobile cruise control. We will neglect the dynamic response of the car
by considering only the steady state case. We will assume that for the range of
speed of the vehicle, the approximated relations are linear. For the automobile
speed, we measure speed on a level road at 55 kilometers per hour (km/h) and find
that a unit change in our control (injection pump input) causes a 10 km/h change
in speed. When the grade changes by 1%, we measure a speed change of 5 km/h.
The accuracy of the speedometer is sufficient and can be considered exact. These
relations permit to obtain the bloc diagram shown in Figure 2.

Fig. 2. Block diagram of automobile cruise feedforward control.

Here lines represent signals as regulated output z, control input u, disturbance
input d, measured output y and reference input r. Squared/round blocks represent
respectively multiplication and summation. In Figure 2, the feedforward controller
does not use the body speed. A possible control policy consists in inverting the
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plant characteristic and the controller sets u = r/10. In this case we obtain the
regulated output speed

z = 10(u− 0.5d)

= 10([r/10]− 0.5d)

= r − 5d.

If d = 0 (a level road) and r = 55 then the vehicle speed will be z = 55 and there
will be no error. However if d = 1 (a 1% grade) then the speed will be r = 50 and
we have a 5 km/h error in speed.

In contrast to feedforward control, a feedback controller uses the measure of
the controlled output (called the feedback signal) as in Figure 3 where the control
input is u = r − y = r − [0.9z].

Fig. 3. Component block diagram of automobile cruise feedback control.

The topology of this block diagram include includes a loop: this is a closed
loop control system. At the opposite the configuration shown in Figure 2 is called
open loop control system. The equations of the closed loop control system are

z = 10(u− 0.5d)

= 10([r − 0.9z]− 0.5d)

= 10r − 9z − 5w

and finally
z = r − d/2.

In this case, if the reference speed is still r = 55 and the grade d = 1 then the
vehicle speed will be y = 54.5 and the error is 0.5 km/h. The effect of feedback is to
reduce the speed error by a factor 10! If we include a gain factor for the controller
greater than 1 the error will still decrease. But there is a limit for the gain value
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due to the power of the engine but more importantly because when the dynamics
are introduced, feedback may induce poor temporal response (stability problems).
As Stephen P. Boyd contends in (Boyd 1993), “a bad feedback controller can yield
performance much worse than an open loop controller”.

2.1.3 Quantitative analysis in the time domain: A tentative

In order to analyze a feedback controlled system we need to obtain a quantitative
mathematical model of the plant. In this paper we assume that the process under
study can be considered as linear over a reasonably large range of the signals and
time invariant. That is, a mathematical model is frequently a set of ordinary dif-
ferential equations and a specific solution can be found using a computer program.
The output s of a general time invariant linear system, in the time domain, is given
by the convolution integral

s(t) = (h ∗ e)(t) =
∫ t

0

h(τ)e(t− τ)dτ, (2.1)

where e(t) is the input signal and where h(t) is the impulse response. We can use
the bloc diagram notation given in Figure 4.

Fig. 4. Block diagram notation of the convolution operation.

This generic block diagram may describe every component of a feedback system
as the controller, the actuator and the sensor. We note respectively k, g1 and g2

their impulse response. We study now a feedback system shown in Figure 5. The
block diagram resembles an automobile cruise block diagram depicted in Figure 3.
We require that the regulated output z becomes zero: this is a disturbance rejection
control problem. Thus the reference signal r is zero and is not represented in the
block diagram. We consider a more realistic model of the sensor: an additive
sensor noise n is taken into account. We will see later in the paper that this block
diagram is a simplified model of an AO control loop.

The equation of the feedback system is

z = d−
{ c︷ ︸︸ ︷

g1 ∗
[
k ∗ (

y︷ ︸︸ ︷
g2 ∗ z + n)︸ ︷︷ ︸

u

] }
, (2.2)

which can be rewritten as

z = d− (g1 ∗ k) ∗ n− (g1 ∗ k ∗ g2) ∗ z. (2.3)
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Fig. 5. Convolution based block diagram of the feedback system.

We have a complicated convolution Equation (2.3): the regulated output z is
the sum of the disturbance signal d, of the signal (g1 ∗ k) ∗ n and of the signal
(g1∗k∗g2)∗z. This last signal is the response of the cascaded system with impulse
response g1 ∗k ∗ g2 where the input is the regulated input z. The regulated output
z depends on itself: this is a feature of the feedback systems. In the time domain
we have a complex convolution Equation (2.3) which is not easy to understand
or to solve. We will see that in the frequency domain the computation and the
interpretation of the transformed equation is straightforward.

2.2 Feedback systems: A frequency approach

2.2.1 Laplace transform & transfer functions

The Laplace transform is well suited to find the solution of Equation (2.2) and
to give interesting information (settling time, overshoot, final value) of feedback
systems. The Laplace transform of a signal f(t) is defined as

L{f} (s) =
∫ ∞

0

f(t)e−stdt. (2.4)

A straightforward consequence of convolution integral (2.1) is

L{s} (s) = H(s)L{e} (s), (2.5)

where H(s) = L{h} (s) is called the transfer function. Thus the Laplace trans-
form of the output L{s} is the product of the transfer function H and of the
Laplace transform L{e}. In the frequency domain Equation (2.5) is the counter-
part of convolution integral (2.1) in the time domain. We can use the bloc diagram
notation given in Figure 4.

Fig. 6. Block diagram notation of the transfer function.
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2.2.2 Feedback system’s transfer functions

The feedback system shown in Figure 5 can be “translated” in the frequency
domain. We call G1(s) = L{g1} (s), G2(s) = L{g2} (s) and K(s) = L{k} (s)
respectively the actuator transfer function, the sensor transfer function and the
controller transfer function. The block diagram is drawn again: the controller’s
block is moved at the bottom and the sensor’s block is displaced at the top.

Fig. 7. Transfer function based block diagram of the feedback system.

In the frequency domain blocks G1(s), G2(s) and K(s) are simple scaling sys-
tems. From block diagram in Figure 7 we obtain

L{z} = L{d} −
{

L{c}︷ ︸︸ ︷
G1

[
K(

L{y}︷ ︸︸ ︷
G2L{z}+ n)︸ ︷︷ ︸

L{u}

] }
,

which can be solved as

L{z} =
1

1 + G1KG2︸ ︷︷ ︸
S

L{d} − G1K

1 + G1KG2︸ ︷︷ ︸
T

L{n} . (2.6)

To understand how controllers ensure relevant properties for the feedback system,
the Equation (2.6) is central. We call

L = G1KG2 (2.7)

the loop transfer function,

S =
1

1 + L
(2.8)

the sensitivity transfer function, and

T = G1KS (2.9)

the noise sensitivity transfer function. For “ideal control” we want z = 0 and
consequently

L{z} ≈ 0L{d}+ 0L{n} . (2.10)
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Disturbance rejection is achieved when S ≈ 0 and noise rejection is ensured when
T ≈ 0. In practice these two transfer function S and T cannot be small at the same
values of s and a trade off should be achieved during the design of the controller
transfer function K.

2.3 Standard examples

In this section we present two case studies to illustrate the concepts introduced in
the preceding paragraph. We will also study the properties ensured both in the
frequency domain and in the time domain for classical controllers (proportional
and integral).

2.3.1 Case study 1

We suppose that the actuator and the sensor have instantaneous responses:

G1(p) = α , G2(p) = β, (2.11)

where α and β are fixed positive scalar. We use a proportional controller which
produces the control input

u(t) = kP y(t), (2.12)

where the scalar kP is the proportional gain. We also consider an integral controller
which imposes the control input

u(t) = kI

∫ t

0

y(τ)dτ, (2.13)

where the parameter kI is the integrator gain. Time domain Equations (2.12)
and (2.13) can be cast under the convolution integral form k ∗ y with impulse
response k(t) = kP δ(t) and k(t) = kI . Hence, controller transfer function K can
be calculated. For numerical purpose, we set the actuator’s gain α = 10 and the
sensor’s gain β = 1. We consider a proportional controller with the gain kP = 0.2,
an integral controller with the gain kI = 0.4 and another integral controller with
the gain kI = 1. These controllers are

K(a)(s) = 0.2, K(b)(s) =
0.4
s

, K(c)(s) =
1
s
· (2.14)

The corresponding sensitivity transfer function, which we denote S(a)(s), S(b)(s),
and S(c)(s) respectively, can be computed from (2.8). The closed-loop systems
that result from using the controllers K(a), K(b), and K(c) can be compared by
examining the sensitivity transfer function S(a), S(b), and S(c). The magnitudes∣∣S(a)(jω)

∣∣, ∣∣S(b)(jω)
∣∣, and

∣∣S(c)(jω)
∣∣ are plot in Figure 8a. From this figure we

can conclude that a low frequency disturbance input will have the least effect in
the feedback system with controller K(c) i.e. the best disturbance rejection perfor-
mance. The real disturbance input is usually unknown. A reasonable approach is
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to choose a standard test input signal as a step d(t) = 1 shown in Figure 9a. This
step response checks the ability of the system to perform under normal operating
conditions using generic test input signals as a step d(t) = 1 shown in Figure 9a.
The step responses of the sensitivity transfer function are shown in Figure 8b.
From this figure it can be seen that the controller K(c) ensures the faster decay of
the transient response.

(a) (b)

Fig. 8. (a) Magnitude of the sensitivity transfer functions S(a), S(b), and S(c). (b) The

step responses from disturbance input d to regulated output z for the sensitivity transfer

functions S(a), S(b), and S(c).

The step responses from the disturbance input d to the control input z for
the three feedback systems are shown in Figure 9b. For integral controllers K(b)

and K(c), final value of their output (control input) is zero when final value of
the regulated output z is zero. This is an important feature of integral controllers
which ensures zero steady-state error for the actuator/plant/sensor configuration
given in (2.11).

(a) (b)

Fig. 9. (a) A step signal d. (b) The step responses from disturbance input d to control

input z for the transfer functions K(a)S(a), K(b)S(b), and K(c)S(c).
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2.3.2 Case study 2

In this section we still consider the standard closed loop system shown in Figure 7.
The sensor always has an instantaneous response but here the actuator is a second
order dynamical system

G1(p) = α
ω2

n

p2 + 2ζωnp + ω2
n

, G2(p) = β. (2.15)

For a numerical purpose, we conserve the actuator’s gain α = 10 and the sensor’s
gain β = 1 of Section 2.3.1. We set the damping factor ζ = 0.7 and the natural
frequency wn = 10. The controller transfer functions are given in (2.14). The
corresponding loop transfer function, which we denote L(d)(s), L(e)(s), and L(f)(s)
respectively, can be computed from (2.7). The same notation holds for

• the sensitivity transfer function S(d)(s), S(e)(s), S(f)(s) calculated from (2.8);

• the noise sensitivity transfer function T (d)(s), T (e)(s), T (f)(s) computed
from (2.9).

The magnitudes
∣∣S(d)(jω)

∣∣, ∣∣S(e)(jω)
∣∣, and

∣∣S(f)(jω)
∣∣ are plot in Figure 10a.

These plots should be compared to the plots depicted in Figure 8a. From this
figure we can conclude that a low frequency disturbance input will have the least
effect on the feedback system with controller K(c) i.e. the best disturbance re-
jection performance. In the low frequencies domain the remarks in Section 2.3.1
should be similar but there is a large peak of the magnitude

∣∣S(f)(jω)
∣∣. We can

conclude that the feedback system with controller K(c) is not stable enough.

(a) (b)

Fig. 10. (a) Magnitude of the sensitivity transfer functions S(a), S(b), and S(c). (b) The

step responses from disturbance input d to regulated output z for the sensitivity transfer

functions S(a), S(b), and S(c).

The Nyquist plots of the loop transfer function L(d), L(e) and L(f) are shown
in Figure 11. The Nyquist plot of L(f)(jω) is too close to the −1 point, see
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(Franklin et al. 1991). We can corroborate that the stability margins are small for
the feedback system with the controller K(c). The step responses of the sensitivity
transfer function are shown in Figure 10b. From this figure it can be seen that the
controller K(c) has a poor transient response. z plot exhibits oscillatory behavior:
the damping ratio of the feedback system is weak. Thus controller K(b) is selected
to be the operating controller.

(a) (b)

Fig. 11. (a) Nyquist plot for the loop transfer functions L(d)(s), L(e)(s) and L(f)(s). (b)

A sinusoidal signal d.

To assess the noise rejection performance we plot the magnitude of the noise
sensitivity transfer function T (d), T (e) and T (f). Figure 12 shows

∣∣T (d)(jω)
∣∣,∣∣T (e)(jω)

∣∣, and
∣∣T (f)(jω)

∣∣, i.e., the magnitudes of the feedback system transfer
functions from measurement noise n to regulated output z. From this figure, we
can conclude that a high frequency sensor noise will have the greatest effect on z
with the controller K(a)(s) and the least effect with the controller K(b)(s). For a
given controller, for instance K(b)(s), remark that the magnitude

∣∣S(e)(jω)
∣∣ and∣∣T (e)(jω)

∣∣ cannot be small in the same frequency domain.
The response of the noise sensitivity transfer function from a sinusoidal dis-

turbance input d plotted in Figure 11b are shown in Figure 10b. From this figure
it can be seen that the sinusoidal steady-state response of the feedback system
with controller K(b)(s) is the smallest. Controller K(b)(s) ensures the best noise
rejection performance.

2.4 Digital controlled systems

2.4.1 Sampled-data feedback system

In practice all control systems that are implemented today are based on a digital
computer. A computer controlled system is sketched schematically in Figure 13.
This block diagram is very similar to block diagram depicted in Figure 7, except
for a digital device which generates the control action. The analog-to-digital (A/D)
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(a) (b)

Fig. 12. (a) Magnitude of the noise sensitivity transfer functions T (a), T (b), and T (c).

(b) The responses from sinusoidal disturbance input d to regulated output z for the

sensitivity transfer functions T (a), T (b), and T (c).

converter shown in Figure 13 is a device that converts the sensor output y(t) to
digital numbers read by the computer. We assume that all the numbers arrive
with the same fixed period T and we neglect the quantization operation thus

y(k) = y(t)|t=kT . (2.16)

The computer interprets the converted signal, y(k) as a sequence of numbers,
processes the measurements using an algorithm, and provides a new sequence of
numbers u(k). The digital-to-analog (D/A) converter converts the sequence of
number u(k) to the physical control signal u(t). In many case the signal u(t) is
kept constant between the successive sampling instants

u(t) = u(k) kT ≤ t < (k + 1)T. (2.17)

We call variables y(k) and u(k) discrete time signals to distinguish them from
continuous time signals y(t) and u(t) which change continuously in time. The
computer-controlled system contains both continuous-time signals and discrete-
time signals and is called a sampled-data system.

For a numerical purpose, we assume that the actuator and the sensor are fading
memory systems with transfer function

G1(p) =
α

0.1s + 1
, G2(p) =

β

0.1s + 1
, (2.18)

and we retain the actuator’s gain α = 10 and the sensor’s gain β = 1 of
Section 2.3.1. The sampling period is T = 0.2 and the disturbance input is a
step d(t) = 1 shown in Figure 9a. The control sequence u(k) is obtained from the
measurement sequence y(k) using the control algorithm

u(k) = u(k − 1) + kITy(k), (2.19)
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Fig. 13. Sampled-data feedback system.

where kI = 0.5. The behavior of the A/D converter is illustrated in Figure 14.
Figure 15a is a plot of the sequence of numbers u(k) obtained from the sequence of
numbers y(k) plotted in Figure 14a. Note that the D/A converter keeps the signal
u(t) constant between the successive sampling instant kT , see the Figure 15b.

(a) (b)

Fig. 14. Analog-to-digital (A/D) converter operation: (a) measured output y(t), (b)

control algorithm input y(k).

For the sake of brevity we do not discuss sampling and reconstruction of
continuous-time signals. For a comprehensive exposure, the interested reader may
consult the book of Astrom & Wittenmark (2011). Remark that to avoid alias-
ing effect, it is necessary to filter the analog signal y(t) before the A/D converter
so that the signal obtained do not have frequencies above the Nyquist frequency.
Note that the output of the D/A are rectangular pulses which causes multiple
harmonics above the Nyquist frequency. This may cause difficulties for systems
with weakly damped oscillatory modes. If needed, the multiple harmonics could
be removed with a low pass filter acting as a reconstruction filter. The overall
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(a) (b)

Fig. 15. Digital-to-analog (D/A) converter operation: (a) control algorithm output u(k),

(b) control input u(t).

behavior of this hybrid feedback system which incorporates both continuous time
signals and discrete time signals can be studied by two different approaches.

1. The first approach, called the emulation design method, see (Franklin et al.
1991), deals with continuous time transfer function. In this case the digi-
tal computer behavior shown in Figure 16 is approximated by an equivalent
continuous time system described by transfer function K(s), see Figure 17.
The overall feedback system is assumed to be continuous and the continous
time framework presented in Sections 2.3.1 and 2.3.2 can be used consider-
ing the feedback loop depicted in Figure 7. This approach is discussed in
Section 2.4.2.

2. For the latter approach the sampled-data feedback system is transformed
into a discrete time feedback system. For this purpose the continuous part
of the system is sampled as seen from the digital computer’s point of view.
The resulting feedback system is characterized by a discrete time transfer
function using the z-transform. In this case discrete time controller design
methods may be used. An analysis of the feedback discrete time system is
performed in Section 2.4.3.

2.4.2 Emulation design method

The output of an integral controller (2.13) at time t = kT is

u(kT ) = kI

∫ kT

0

y(τ)dτ

= kI

∫ kT−T

0

y(τ)dτ + kI

∫ kT

kT−T

y(τ)dτ

= u(kT − T ) + kI

∫ kT

kT−T

y(τ)dτ︸ ︷︷ ︸
I

.
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Several approximations of the incremental term I can be chosen as for instance
the backward rectangular rule I ≈ Ty(kT ). Hence we obtain

u(kT )︸ ︷︷ ︸
u(k)

= u(kT − T )︸ ︷︷ ︸
u(k−1)

+kIT y(kT )︸ ︷︷ ︸
y(k)

,

which is equivalent to Equation (2.19). Thus the digital computer with algorithm
defined by Equation (2.19) is a discrete time equivalent to the continuous time
controller K(s) = kI/s.

Fig. 16. Association of the A/D converter with the control algorithm and with the D/A

converter.

Fig. 17. Equivalent transfer function K(s).

We consider that the feedback system is described by the block diagram shown
in Figure 7. For the given transfer functions G1, G2 defined by (2.18), standard
continuous time design method can be used to obtain the integral controller

K(h)(s) =
0.5
s
·

This continuous time controller is approximated with the difference Equation (2.19)
and we call K(i) and K(j) the discrete time controller with the sampling period
T = 0.2 and T = 0.05. We assume that the disturbance input d is a step. We
called z(h) the “ideal” regulated output response of the continuous time feedback
system, z(i) the regulated output response of the sampled-data feedback system
when the discrete time controller is K(i), and z(j) the regulated output response
of the sampled-data feedback system when the discrete time controller is K(j).
These signals are plotted in Figure 18a an Figure 19a. From these figures we
can conclude that z(j) is the best approximation of the “ideal” regulated output
response z(h).
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(a) (b)

Fig. 18. “Ideal” regulated output response z(h) of the continuous time feedback system,

regulated output response z(i) of the sampled-data feedback system when T = 0.2, and

regulated output response z(j) of the sampled-data feedback system when T = 0.05.

The “ideal” input response u(h) of the continuous time feedback system, the
regulated output response u(i) of the sampled-data feedback system when the
discrete time controller is K(i), and the regulated output response u(j) of the
sampled-data feedback system when the discrete time controller is K(j) are shown
in Figure 18b and in Figure 19b. It can be seen that the response u(j) matches
the “ideal” response u(h). We can conclude that clearly the sampling period
T = 0.2 is too rough and that the sampling period T = 0.05 ensures a satis-
factory performance. As mentioned by Franklin et al. (1991), “sampling at a rate
that is over 20 times faster than the bandwidth is a good, safe rule of thumb”.

(a) (b)

Fig. 19. “Ideal” regulated output response u(h) of the continuous time feedback system,

regulated output response u(i) of the sampled-data feedback system when T = 0.2, and

regulated output response u(j) of the sampled-data feedback system when T = 0.05.
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2.4.3 Discrete time controller design

In Figure 13 the job of the digital computer is to take the sampled value y(k) and
to compute the values u(k) to be sent to the D/A converter. The treatment of
the data inside the computer can be expressed as a linear difference equation as
for example the Equation (2.19), which describes a discrete time invariant linear
system. In Section 2.2 the Laplace transform plays an important role and permits
to introduce the transfer function and frequency interpretation of the closed loop
system shown in Figure 7. The discrete-time analog of the Laplace transform is
the z-transform which is a convenient tool to study general discrete linear systems.
The z-transform of a signal y(k) is defined as

Z {y} (z) =
∞∑

k=0

y(k)z−k, (2.20)

where z is a complex variable. If we multiply (2.19) by z−k and sum over k we
obtain ∞∑

k=0

u(k)z−k

︸ ︷︷ ︸
Z{u}(z)

=
∞∑

k=0

u(k − 1)z−k + kIT
( ∞∑

k=0

y(k)z−k

︸ ︷︷ ︸
Z{y}(z)

)
. (2.21)

In the first term on the right hand side, we let k−1 = j to get
∑∞

k=0 u(k−1)z−k =∑∞
j=1 u(j)z−(j+1) = z−1Z {u}. Equation (2.20) can be can be rewritten as

Z {u} (z) = z−1Z {u} (z) + kITZ {y} (z) (2.22)

which is simply an algebraic equation in z. The solution is

Z {u} (z) = kIT
z

z − 1︸ ︷︷ ︸
K(z)

Z {y} (z). (2.23)

We have obtained
Z {u} (z) = K(z)Z {y} (z) (2.24)

where K(z) = kIT
z

z−1 is called the discrete time transfer function. Thus the
z-transform of the output Z {u} is the product of the transfer function K and the
z-transform Z {y}. We can use the bloc diagram notation given in Figure 20.

Fig. 20. Block diagram notation of the transfer function.

All the framework presented in Section 2.3 for analyzing continuous time sys-
tems can be extended to discrete time systems. We consider a discrete time system
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with the associated block diagram shown in Figure 21 where K(z) is the controller
transfer function, G1(z) is the actuator transfer function, and G2(z) is the sensor
transfer function. This block diagram is similar to the block diagram depicted in
Figure 7.

Fig. 21. Discrete time feedback system.

Hence the regulated output response is

Z {z} =
1

1 + G1(z)K(z)G2(z)︸ ︷︷ ︸
S(z)

Z {d} − G1(z)K(z)
1 + G1(z)K(z)G2(z)︸ ︷︷ ︸

T (z)

Z {n} . (2.25)

We still use the following terminology: (i) L(z) = G1(z)K(z)G2(z) is the loop
transfer function; (ii) S(z) = 1

1 + L(z) is the sensitivity transfer function; (iii)

T (z) = G1(z)K(z)S(z) is the noise sensitivity transfer function. All results pre-
sented in Section 2.3 for continuous time feedback systems are relevant for discrete
time feedback systems.

The main difficulty concerns the correspondence between this block diagram
shown in Figure 21 and the block diagram of the “real” sampled data feedback
system depicted in Figure 13. This block diagram is redrawn in Figure 22 to make
the comparison easier.

Fig. 22. Sampled-data feedback system.
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It is obvious to note that the control algorithm is represented by the transfer
function K(z). For a “perfect” connection: (i) the discrete time transfer function
G1(z) should be viewed as the composition of the D/A converter system and the
actuator transfer function G1(p); (ii) the discrete time transfer function G2(z)
should describe the actuator transfer function G2(p) and the A/D converter. In
general this connection is not possible and a deeper analysis should be performed
using the pulse transfer function formalism, see (Franklin et al. 1990; Astrom
& Wittenmark 2011) which is beyond the scope of this tutorial. However in the
absence of continuous time disturbance d, the discretization of the continuous time
part of sampled data feedback system is a standard result, see Franklin et al. (1990)
and allows to obtain the aggregated/global transfer function G1(z)G2(z). But this
global transfer function cannot be split in order to obtain transfer function G1(z)
and transfer function G2(z). Yet for some special case of sensor transfer function
G2(p) as CCD-based sensor, see (Looze 2005), the connection of the sampled data
feedback system’s block diagram shown in Figure 22 and the discrete time feedback
system’s block diagram shown in Figure 21 is faithful.

3 Adaptive optics feedback control

3.1 Problem statement and wavefront spatial discretization

Among its applications, AO systems can be used to reduce the effects of atmo-
spheric turbulence on images taken from ground-based telescopes. The principle of
a classical AO system is depicted in Figure 23. The atmospheric wavefront on the
telescope aperture, defined at instant t as the two dimensional function ψa(x, t), is
the input of the feedback system. The deformable mirror introduces a correction
denoted by ψm(x, t) which is subtracted from the incoming/atmospheric wavefront
to obtain the outcoming/residual wavefront

ψr(x, t) = ψa(x, t)− ψm(x, t). (3.1)

The shape of the DM is adjusted in real time using the measurements y of a
wavefront sensor which provides the local slopes of the residual wavefront, see
Figure 24.

There exists different type of deformable mirrors and we choose to study the
case of the most common one. For additional details on basic principles of adaptive
optics, the reader can consult (Roddier 1999). We assume that the frequency
bandwidth of the DM is higher than the bandwidth of the A0 loop. Moreover the
DM’s deformation is sufficiently small to consider a linear response. nu actuators
are used and we denote ai(t) the stroke of the ith actuator. Thus the DM’s shape
is modeled as follows

ψm(x, t) =
nu∑
i=1

ai(t)fi(x), (3.2)
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Fig. 23. Adaptive optics system.

where fi(x) is called the influence function of the ith actuator. We suppose that the
DM’s actuators and the associated power amplifiers have sufficient fast dynamics
such that we assume that

ai(t) = ui(t). (3.3)

We denote ui(t) the control input which is the power amplifier input of the ith
actuator.

Different types of sensors (curvature sensor, pyramid wavefront sensor) may
be used to estimate the distortions affecting the outcoming wavefront but the
most frequently encountered in existing applications is the Shack-Hartmann (SH)
wavefront sensor. The principle of a SH wavefront sensor is shown in Figure 24.
The outcoming wavefront is imaged using a lenslet array of size nw. Each lens
takes a small part of the aperture, called sub-pupil, and forms an image of the
source recorded by the detector, typically a CCD. If no wavefront aberrations
are present, the image pattern is a grid of spots with constant intervals. As
soon as the wavefront is distorted, the images are displaced from their nomi-
nal positions. Displacements of image centroids in two orthogonal directions u, v
are proportional to the average wavefront slopes in u, v over the subapertures.
The shift is computed using classic methods (center of gravity algorithms, ...).
Thus, a SH sensor measures the wavefront average slopes (αu,i, αv,i) for each
subaperture i.

A usual representation of wavefront is made through the orthogonal basis, typ-
ically Karhunen-Loève functions or Zernike polynomials as defined in (Noll 1976).
An infinite number of functions is required to characterize the wavefront, but a
truncated basis {Fi(x)} of dimension nb, that we called the modal basis is used for
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Fig. 24. Shack-Hartmann wavefront sensor principle.

implementation purpose. Thus the atmospheric wavefront ψa can be decomposed
on the modal basis as follows:

ψa(x, t) ≈
nb∑
i=1

wa,i(t)Fi(x), (3.4)

where we denote wa,i the modal coordinates which are the coefficients of this
decomposition. We collect the scalar coefficient signals wa,1, ..., wa,nb

to form the
vector

wa(t) =

⎡⎢⎣ wa,1(t)
...

wa,nb
(t)

⎤⎥⎦ .

The same representation (3.4) is used for the mirror correction ψm, and the residual
wavefront ψr; similarly the coefficient signals are collected to form vector signals
wm and wr. Control inputs u1, ..., unu and average WFS slopes αu,1, αv,1, ...,
αu,nw , αv,nw are collected to form the control input vector u and the slope vector s.
That is,

u(t) =

⎡⎢⎣ u1(t)
...

unu(t)

⎤⎥⎦ , s(t) =

⎡⎢⎢⎢⎢⎢⎣
αu,1

αv,1

...
αu,nw

αv,nw

⎤⎥⎥⎥⎥⎥⎦ .

Equations (3.1), (3.2) are translated into modal coordinates using vector notation as

wr(t) = wa(t)− wm(t), (3.5)

and
wm(t) = Mmu(t), (3.6)
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where Mm is called the mirror influence matrix. The slope signal s is expressed as

s(t) = Mwwr(t), (3.7)

where we denote Mw the WFS matrix. As mentioned by Looze (2005), the out-
put of the CCD detector, intrinsically a discrete-time signal, integrates over the
sampling period T the delayed slope

s̃(t) = s(t− τ). (3.8)

We call τ the continuous time measurement delay which is the sum of the CCD’s
readout time and of the slopes’ computation time. Thus, the output of the CCD
based sensor is

y(t) =
1
T

∫ t

t−T

s̃(σ)dσ + n(t), (3.9)

where n(t) is an additive noise caused by the photon fluctuations and by the
detector’s readout noise.

3.2 Disturbance rejection MIMO feedback loop

If we refer to the feedback block diagram depicted in Figure 13, Equations (3.5),
(3.6), (3.7), (3.8), and (3.9) define the continuous time part of the sampled-data
feedback system shown in Figure 13. The regulated output is z(t) = wr(t), the
disturbance input is d(t) = wa(t), and the actuator output is v(t) = wm(t). The
actuator/DM transfer function is simply

G1(p) = Mm.

In Figure 13, the sensor/WFS is described by the transfer function

G2(p) =
(
e−τpI

)(1− e−Tp

Tp
I
)
Mw.

As proposed in the paper (Demerle et al. 1994), a first approach, the emulation
design method presented in Section 2.4.2, approximates the AO feedback system
with the continuous time feedback system shown in Figure 7. In Section 2.4.2 we
have considered a single-input single-output (SISO) feedback system but here the
feedback loop signals may have large dimensions: this is the multiple-input and
multiple-output (MIMO) feedback system depicted in Figure 25.

The Equation (2.6) established for a single-input single-output (SISO) system
becomes

L{wr} (p) =

S(p)︷ ︸︸ ︷
(I + G1(p)K(p)G2(p))−1 L{wa} (p)

− (I + G1(p)K(p)G2(p))−1G1(p)K(p)︸ ︷︷ ︸
T (p)

L{n} (p).
(3.10)
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Fig. 25. An approximation of an AO MIMO feedback system.

where the following terminology remains:

(i) L(p) = G1(p)K(p)G2(p) is the loop transfer function;

(ii) S(p) = (I + L(p))−1 is the sensitivity transfer function;

(iii) T (p) = S(p)G1(p)K(p) is the noise sensitivity transfer function.

The disturbance rejection performance is entirely determined by transfer func-
tions S and T . At this step no assumption is made for the type of controller
(optimized modal controller, linear quadratic Gaussian control, ...) for the set
of the perturbation inputs wa and n. The performance criterion, the “size” of
the residual wavefront wr is not defined either. A possible approach sketched in
Section 2.2, involves the frequency response analysis generalized for MIMO systems
which provides some crucial information about the system performances (stability,
disturbance rejection, command input peak value), see for instance the book 2007.
Another way is to evaluate the “size” of the residual wavefront wr in terms of the
variance (mean-square error) E

[
wr(k)T wr(k)

]
when stochastic signals wa, nw are

considered zero mean, stationary and independent. The Maréchal approximation
(Born & Wolf 1999) can be invoked to show that bounding the mean-square error
of the residual wavefront ensures satisfactory imaging performance of AO systems.
Thus, in the frequency domain, the variance can be written as

E
[
‖wr(t)‖2

]
= 1

2π

∫ ∞

−∞
Tr

(
S(jω)Φwa(jωT )S(−jω)T

)
dω

+ 1
2π

∫ ∞

−∞
Tr

(
T (jω)Φn(jω)T (−jω)T

)
dω,

(3.11)

where Φwa and Φn are the power spectral densities of the input signals wa and
nw. The first term of the right hand side of Equation (3.11) represents the contri-
bution of the atmospheric wavefront and the latter the contribution of the WFS
measurement noise. The optimized modal gain integral control (OMGI) proposed
by Gendron & Léna (1994) and its improvements, see (Dessenne et al. 1998), is a
well-established method to tackle this control problem.
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3.3 Optimized modal gain integral control

The key idea of the approach is to reconstruct the wavefront using the WFS
measurement y and to consider the linear relation (3.7). The WFS matrix Mw

can be expressed into its singular value decomposition, see (Laub 2004)

Mw = UΣV T (3.12)

where U , V are orthogonal matrices. We assume that rank (Mw) = nb and

U =
[

U1 U2

]
, Σ =

[
S
0

]
, with S = diag (σi) ,

where terms σi are positive singular values of the matrix Mw. We define M †
w =

V S−1UT
1 as the Moore-Penrose pseudoinverse of the matrix Mw, see (Laub 2004).

We also denote rank (Mm) = nb and we call M †
m the Moore-Penrose pseudoinverse

of the matrix Mm. An integral (modal) controller can be defined as

K(p) = M †
m

(
1
p
KI

)
M †

w, (3.13)

where KI is the matrix integrator gain to design. We consider a new atmospheric
wavefront signal w̃a, and a new sensor noise signal ñ, such that

wa = V w̃a, n = U1Sñ,

and a new residual wavefront signal

w̃r = V T wr.

The block diagram of the feedback system is depicted in Figure 26.
Despite the complexity of the block diagram, a change of signals allows us to

obtain a straightforward expression of the residual wavefront

L{w̃r} =
(

I +
1
p
K̃Ie

−τp 1− e−Tp

Tp

)−1

︸ ︷︷ ︸
S̃

L{w̃a}

−
(

I +
1
p
K̃Ie

−τp 1− e−Tp

Tp

)−1
1
p
K̃I︸ ︷︷ ︸

T̃

L{ñ}
(3.14)

where the matrix gain is K̃I = V T KIV . If we fix the matrix gain such that
K̃I = diag

(
k̃i

)
, then the MIMO transfer functions S̃ and T̃ are diagonal: the

MIMO control problem reduces to nb independent SISO control problems. We
call S̃i (T̃i) the ith diagonal entry of the sensitivity transfer function S (the noise
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Fig. 26. Modal feedback system.

sensitivity transfer function T ). Thus, the variance of each component can be
written as

E
[
‖w̃r,i(t)‖2

]
=

1
2π

∫ ∞

−∞

∣∣∣S̃i(jω)
∣∣∣2 Φw̃a,i(jω)dω +

1
2π

∫ ∞

−∞

∣∣∣T̃i(jω)
∣∣∣2 Φñi(jω)dω,

(3.15)
where Φw̃a,i(jω) and Φñi(jω) are the power spectral densities of the ith component
of vector signals w̃a and ñ. The integral gain k̃i is tuned using the loop shaping
approach sketched in Section 2.3.2 to minimize the variance of the ith compo-
nent which induces the minimization of the variance E

[
wr(t)T wr(t)

]
. Then, the

controller matrix gain is computed as

KI = V K̃IV
T . (3.16)

The main advantage of the optimized modal gain integral control, which explains
its success in practice, is to express some of the controller’s signals in the modal
base which facilitates the physical interpretation. Furthermore it is intrinsically
a frequency approach: the analysis of the AO feedback system’s performance is
straightforward. The well established OMGI control offers interesting abilities.
Constant additive disturbances as actuator offset are intrinsically rejected. The
real time computational cost is reasonable and induces limited delay. The method
can be used when the knowledge of the disturbance temporal dynamics is weak.
Some shortcomings have been mentioned in the literature. The integral controller
can be transformed into an observer based controller structure, see (Kulcsár et al.
2006). The observer is not stable and the control u may blow up. On a simplified
SCAO configuration some authors Conan et al. (2011) indicated that more ad-
vanced control approaches such as linear quadratic Gaussian control ensure better
performances.
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4 Modern feedback control: LQG method for adaptive optics

4.1 Towards linear quadratic Gaussian control

4.1.1 Adaptive optics feedback loop

The WFS Equations (3.7), (3.8), and (3.9) provide a linear relationship between
the temporal average of the residual wavefront over the sampling period T and the
discrete time measurement (2.16) corrupted by a measurement noise. Thus, we can
write the discrete time residual wavefront wr(k) as the average of the continuous
time residual wavefront wr(t)

wr(k) =
1
T

∫ kT

(k−1)T

wr(t)dt. (4.1)

The same temporal discretization (4.1) is done for the mirror wavefront wm(k)
and the atmospheric wavefront wa(k). The WFS Equations (3.7), (3.8), (3.9),
and (2.16) are transformed into difference equation. We obtain in the frequency
domain

Z {y} = z−kyMw︸ ︷︷ ︸
G1

Z {wr}+ Z {n} , (4.2)

where n is an additive measurement noise and where ky is the measurement delay
such that τ = kyT . Equations (3.5) and (3.6) become

Z {wr} = Z {wa} −Mwz−ku︸ ︷︷ ︸
G2

Z {u} , (4.3)

where ku ≥ 1 represents the control input delay. We call G1(z) the DM transfer
function and G2(z) the WFS transfer function. The block diagram of the discrete
time AO feedback system is shown in Figure 21. Here the AO loop is a MIMO
feedback system. The regulated output response (2.25) established for a SISO
system becomes

Z {wr} (z) =

S(z)︷ ︸︸ ︷
(I + G1(z)K(z)G2(z))−1Z {wa} (z)

− (I + G1(z)K(z)G2(z))−1G1(z)K(z)︸ ︷︷ ︸
T (z)

Z {n} (z).
(4.4)

where the following terminology remains:

(i) L(z) = G1(z)K(z)G2(z) is the loop transfer function;

(ii) S(z) = (I + L(z))−1 is the sensitivity transfer function;

(iii) T (z) = S(z)G1(z)K(z) is the noise sensitivity transfer function.
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Up to now the framework is identical to the approach presented for the continuous
time feedback loop in the frequency domain. However we have to keep in mind
that here we adopt the point of view of the digital computer and that the regulated
output wr(k) is the temporal average of the “real” regulated output wr(t). This
approach is relevant when the choice of the sampling period T is not critical in
regards with the dynamics of the atmospheric wavefront. We assume that signals
wa, nw are zero mean, stationary and independent stochastic signals. Thus, in the
frequency domain, the variance E

[
‖wr(k)‖2

]
can be written as

E
[
‖wr(k)‖2

]
= T

2π

∫ 2π
T

0

Tr
(
S(ejωT )Φwa(ω)S(e−jωT )T

)
dω

+ T
2π

∫ 2π
T

0

Tr
(
T (ejωT )Φn(ω)T (e−jωT )T

)
dω ,

(4.5)

where Φwa and Φn are the power spectral densities of the input signals wa and n.
The first term of the right hand side of Equation (4.5) represents the contribution
of the atmospheric wavefront and the latter the contribution of the WFS mea-
surement noise. Equation (4.5) indicates the frequency range where the frequency
responses S(ejωT ) and T (ejωT ) have to be small. Power spectral densities Φwa

and Φn can be seen as weighting functions for performance objective (4.5). The
control problem can be formulated as finding the control law that minimizes the
variance E

[
‖wr(k)‖2

]
To take into account more accurately the information of

the atmospheric wavefront we have to build a model of the temporal evolution
of wa(k).

4.1.2 Identified atmospheric wavefront model

The power spectral densities Φwa may be factored as

Φwa(w) = Ga(ejωT )Ga(e−jωT )T ,

and the atmospheric wavefront wa is assumed to be the output of a causal and
stable diagonal transfer function matrice Ga driven by a white noise na having a
unitary covariance matrix. To take into account the oscillating behavior of wa(k)
a second order diagonal AR model is considered

A0wa(k) + A1wa(k − 1) + A2wa(k − 2) = na(k), (4.6)

where diagonal matrices (A0, A1, A2) are the AR parameters. The computation
of the parameters is carried out with the Burg algorithm, see (Burg 1975), which
minimizes the sum of the squares of the forward and backward prediction errors.
In the frequency domain we obtain

Z {wa} =
(
A0z

2 + A1z + A2

)−1
z2︸ ︷︷ ︸

Ga

Z {na} .

which defines the atmospheric wavefront filter Ga. The AO block diagram is
depicted in Figure 27 where the different loop signals are mentioned.
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Fig. 27. AO discrete-time system block-diagram including the atmospheric model.

4.1.3 Performance objective in the time domain

In the time domain, the AO control problem can be formulated as finding the con-
trol law that minimizes the empirical variance of the residual wavefront, averaged
over a large exposure time Te

E
[
‖wr(t)‖2

]
= lim

Te→∞

1
Te

∫ Te

0

‖wr(t)‖2 dt, (4.7)

which is the time domain counterpart of (3.11) for a stationary ergodic process
and the “true” imaging performance index. Several authors Kulcsár et al. (2006),
Looze (2007) demonstrated that the minimization of the residual wavefront vari-
ance E

[
‖wr(t)‖2

]
can be performed using the discrete-time model of the hybrid

AO system without loss of optimality. Therefore, the performance objective to
minimize, in the discrete-time domain is translated as

E
[
‖wr(k)‖2

]
= lim

N→∞

1
N

N∑
k=1

‖wr(k)‖2 , (4.8)

which is the time domain counterpart of (4.5). This last control objective can be
minimized using LQG design approach using a state-space description of the aug-
mented plant (DM, WFS, atmospheric wavefront model) as discussed in
Section 4.3.

4.2 LQG control framework

4.2.1 State space equation

The state space method is based on the description of system equation in terms
of n first-order difference equations, which may be combined into a first-order
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vector-matrix difference equation. The state space equation of a discrete time
system can be written

x(k + 1) = Ax(k) + Be(k)
s(k) = Cx(k) + Du(k).

(4.9)

Here x ∈ Rn is the state of the system, e ∈ Rm is the input, and s ∈ Rr is the
output. For example consider the AR difference Equation (4.6) when the signals
wa and na are scalars

a0wa(k + 1) + a1wa(k) + a2wa(k − 1) = na(k),

where real scalars a0, a1, a2 are given. To convert this equation into the state
space Equation (4.9), we define x1(k) = wa(k), x2(k) = wa(k − 1), e(k) = na(k),
and s(k) = wa(k). The first-order difference equations are then

x1(k + 1) = wa(k + 1) = −a1
a0

wa(k)− a2
a0

wa(k − 1) + 1
a0

na(k)

= −a1
a0

x1(k)− a2
a0

x2(k) + 1
a0

e(k)

x2(k + 1) = wa(k) = x1(k)

s(k) = wa(k) = x1(k).

We can write this in matrix/vector form as[
x1(k + 1)
x2(k + 1)

]
=

[
−a1

a0
−a2

a0
1 0

] [
x1(k)
x2(k)

]
+

[
1
a0
0

]
e(k)

s(k) =
[

1 0
] [ x1(k)

x2(k)

]
+ 0 e(k).

If we pose

A =
[ −a1

a0
−a2

a0
1 0

]
, B =

[
1
a0
0

]
, C =

[
1 0

]
, D = 0,

we obtain the state space Equation (4.9). In the general case, the atmospheric
wavefront model Ga can be written in state space form as

xa(k + 1) = Aaxa(k) + Bana(k),

ya(k) = Caxa(k),
(4.10)

where the state xa ∈ R2nb is xa(k) =
[
wa(k)T wa(k − 1)T

]T and where state
space matrices are

Aa =
[
−A−1

0 A1 −A−1
0 A2

I 0

]
, Ba =

[
A−1

0

0

]
, Ca =

[
I 0

]
. (4.11)
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4.2.2 Linear quadratic Gaussian control

The discrete-time LQG control theory considers that the system is linear and that
the disturbance (plant noise) and the measurement noise inputs are stochastic.
Thus, the system is described by the state-space representation

x(k + 1) = Ax(k) + Bu(k) + w(k)
y(k) = Cx(k) + v(k), (4.12)

where x ∈ Rn is the state vector, u ∈ Rnu the command input, y ∈ Rny the
measured output, and where w ∈ Rn represents the disturbance input and v ∈
Rny is the measurement noise input. We assume that Gaussian noise processes
w(k) and v(k) are mutually independent, zero mean white noises with covariance
E

[
w(k)wT (l)

]
= Wδ(k − l) and E

[
v(k)vT (l)

]
= V δ(k − l), respectively. It is

supposed that the pair (A, B), (A, W 1/2) are stabilizable and the pair (A, C) is
detectable.

The LQG control problem is to find the optimal control u(k) for system (4.12)
that minimizes the infinite horizon quadratic cost criterion

J = lim
N→∞

1
N

E

[
N−1∑
k=0

x(k)T Qx(k) + u(k)T Ru(k)

]
, (4.13)

with given weighting matrices Q = QT ≥ 0, R = RT > 0 and the pair (A, Q1/2)
detectable.

The solution of the LQG control problem is then provided by the interconnec-
tion of a linear quadratic regulator and a state estimator. This result is known
in linear optimal control theory as the Separation Principle, see (Kwakernaak &
Sivan 1972; Anderson & Moore 1990). The optimal control sequence minimizing
the cost function (4.13) is given by the state-feedback control law

u(k) = −Kx̂(k), (4.14)

where x̂ is the optimal estimate of the state x. The state-feedback gain K is a
constant matrix

K =
(
R + BT PB

)−1
BT PA, (4.15)

where the matrix P = PT is the unique positive-semidefinite solution of the control
discrete-time algebraic Riccati equation (DARE)

P = AT PA−AT PB
(
BT PB + R

)−1
BT PA + Q. (4.16)

Note that the conditions R > 0, (A, B) detectable and (A, Q1/2) detectable can be
relaxed, see (Bitmead & Gevers 1991; Dorato & Levis 1971). The optimal state es-
timation which minimizes the variance of the estimation error E

[
|x̂(k)− x(k)‖2

]
,

is performed through a standard Kalman predictor filter with

x̂(k + 1) = Ax̂(k) + Bu(k) + L(y(k)− Cx̂(k)), (4.17)
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where L is the observer gain

L = AXCT (CXCT + B)−1. (4.18)

where the matrix X = XT is the unique positive-semidefinite solution of the
estimation DARE

X = AXAT −AXCT (CXCT + V )−1CXAT + W. (4.19)

4.3 Application of LQG control to the adaptive optics system

4.3.1 AO state space system

In the sequel we consider a unitary input delay ku = 1 and a unitary output delay
ky = 1. The “augmented system”, depicted in Figure 27, is described by the state
space Equation (4.9) where the signals are defined as follows.

1. The state vector x is split in two parts x =
[

xT
m xT

a

]T . The state xm(k) =[
wm(k)T wm(k − 1)T

]T represents the plant dynamics (DM & WFS) and
state xa(k) corresponds to the perturbation dynamics (4.10).

2. The state noise is w =
[

0
Ba

]
na and the measurement noise is v = n.

The state space matrices of the augmented system (DM, WFS, ATM) are defined
as

A =
[
Am 0
0 Aa

]
, B =

[
Bm

0

]
, C = Mw

[
Cm Ca

]
. (4.20)

The state space matrices of the plant are

Am =
[
0 0
I 0

]
, Bm =

[
Mm

0

]
, Cm =

[
0 −I

]
, (4.21)

and state-space matrices (Aa, Ba, Ca) are given in (4.11).
The special form of state space matrices (4.20) can be exploited to simplify the

resolution of the Riccati equations, see (Bitmead et al. 1990). For the presentation
of the following results, matrices P , X and Q are partitioned conformally with the
matrix A, that is

P =
[
Pm P0

PT
0 Pa

]
, X =

[
Xm X0

XT
0 Xa

]
, Q =

[
Qm Q0

QT
0 Qa

]
.

4.3.2 Solving the control DARE

The control DARE (4.16) can be simplified to obtain solutions for the individual
blocks of P . We have to find the matrix Pm = PT

m the unique positive-semidefinite
solution of the reduced order DARE

Pm = AT
mPmAm −AT

mPmBm

(
BT

mPmBm + R
)−1

BT
mPmAm + Qm. (4.22)
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The state-feedback gain (4.15) becomes K =
[
Km Ka

]
with

Km = (BT
mPmBm + R)−1BT

mPmAm. (4.23)

We search matrix P0 which is a solution of the following discrete-time Sylvester
equation

P0 = (Am −BmKm)T
P0Aa + Q0 . (4.24)

We obtain
Ka = (BT

mPmBm + R)−1BT
mP0Aa. (4.25)

The special form of state space matrices (4.21) imply that Km = 0 and that

Ka = −
(
R + MT

mMm

)−1
MT

mCaA2
a . (4.26)

4.3.3 Solving the estimation DARE

The estimation error can be written as x̃T =
[
x̃T

m x̃T
a

]
=

[
x̂T

m − xT
m x̂T

a − xT
a

]
.

The state xm is a deterministic signal and thus x̃m = 0 which simplifies the blocks
Xm = 0, X0 = 0. The estimation DARE (4.19) can be simplified to obtain
solutions for the individual blocks of X . Thus the matrix Xa = XT

a is the unique
positive-semidefinite solution of the reduced order DARE

Xa = AaXaAT
a −AaXaCT

a

(
CaXaCT

a + V
)−1

CaXaAT
a + BaBT

a . (4.27)

The observer gain (4.18) becomes L =
[

0
La

]
with

La = AaXaCT
a

(
CaXaCT

a + V
)−1

. (4.28)

4.3.4 LQG controller

The strictly proper, linear time invariant controller, is described by the state-space
equation

x̂(k + 1) = Âx̂(k) + B̂y(k)

u(k) = Ĉx̂(k)
(4.29)

where the matrices Â, B̂, Ĉ are

Â =
[

Am −BmKa

−LaMwCm Aa − LaMwCa

]
, B̂ =

[
0

La

]
, Ĉ = −

[
0 Ka

]
.

Note that the LQG controller is equivalently described by the discrete time transfer
function

K(z) = Ĉ
(
zI − Â

)−1

B̂,

which is a convenient form (i) to analyze the AO feedback system depicted in
Figure 27; (ii) to interpret the AO performance index (4.5).
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4.4 LQG controller design

We consider an 8-m telescope without obstruction and the 512× 512-pixels wave-
fronts projected over 44 Zernike (nb = 44). The physical modeling has been
performed by means of the Software Package CAOS (Carbillet et al. 2005), de-
veloped within the CAOS problem-solving environment (PSE), see (Carbillet et al.
2010). The computation of the LQG state-space matrices (4.20) is carried out
using Matlab software and the Control system toolbox and involves the fol-
lowing steps.

Step 1: AO discrete-time state-space computation. DM controls perfectly
low spatial frequencies with nu = 44 actuators and consequently Mm = Inb

. The
WFS device is a 8×8 (⇒ ny = 52) subaperture Shack-Hartmann WFS (8×8 0.2′′

px/subap., λ = 700nm ± 150 nm, Δt = T = 1ms.). The WFS influence matrix
Mw is determined from the WFS calibration simulation.

Using Software Package CAOS 500 × 1 ms wavefronts propagated through an
evolving 2-layers turbulent atmosphere (r0 = 10 cm at λ = 500 nm, L0 = 25 m,
wind velocities = 8 & 12 m/s) are obtained. After the projection on the Zernike
base, the signal wa is modeled as the output of an AR system using the approach
presented in Section 4.1.2. The computation of the parameters is carried out with
the Burg algorithm, see (Burg 1975), using the Signal Processing Toolbox of
Matab and permits to obtain state space matrices (4.11). Then, the computation
of the LQG state space matrices is obvious using Equation (4.20).

Step 2: Additive noise covariance estimation. Covariance matrix V for
LQG design is a tuning parameter which dictates the performance of the AO con-
trol loop. We use the empirical covariance matrix obtained from a photon noise
calibration from our CAOS simulations. Note that this needs anyway to be refined
for future developments.

Step 3: controller design. To minimize the performance objective E
[
‖wr(k)‖2

]
given in the discrete-time domain (4.8) we consider the LQG performance index
J defined by (4.13) with the weigthing parameter R = 0 (cheap control case).
We have designed two kinds of optimal controller. LQG1 has been designed with
the noise covariance matrix V equal to zero, while for LQG2 we use the empirical
covariance matrix built in step 2.

4.5 Discussion

4.5.1 A posteriori frequency analysis

In the Figure 28–30 show the singular values of S(ejωT ) in the left part, and the
singular values of T (ejωT ) in the right part. The maximum singular values are
plotted in plain line, while the minimum singular values are plotted in dashed
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Fig. 28. Plot of singular values of S(ejωT ) in the left part, and the singular values of

T (ejωT ) in the right part for integrator case (with a gain of 0.3).

Fig. 29. Plot of singular values of S(ejωT ) in the left part, and the singular values of

T (ejωT ) in the right part for LQG1 controller case.

line. The integrator case (with a gain of 0.3) is plotted in Figure 28, the LQG1
controller case in Figure 29, and the LQG2 controller case in Figure 30.

Note that the sensitivity transfer function S for the LQG1 controller case shows
that the LQG1 controller ensures a better rejection of the atmospheric wavefront
than the LQG2 controller. If we check the frequency response of the noise rejection
transfer function T , LQG1 design is more sensitive to noise than LQG2 design.
The integrator case exhibits the worst frequency performance. These indications
have to be confirmed by using CAOS end to end simulation.

4.5.2 Performance comparison

The time simulation has been performed by means of the Software Package
CAOS. An ad hoc module, SSC, which stands for “Space-State Control”, has been
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Fig. 30. Plot of singular values of S(ejωT ) in the left part, and the singular values of

T (ejωT ) in the right part for LQG2 controller case.

developed especially for this study, also with the goal of making it publicly avail-
able with a future upgrade of the Software Package CAOS. Figure 31 shows the
numerical modeling designed within the CAOS PSE.

Fig. 31. CAOS numerical modeling of the AO system.

Figure 32 represents an example of running simulation. Left: the atmospheri-
cally-perturbed input wavefront. Middle: the corresponding Shack-Hartmann
spots. Right: the resulting corrected wavefront.

For different operating conditions (star magnitude) we have obtained the fol-
lowing results sum up in Table 1. In bright conditions LGG and integral controllers
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Fig. 32. CAOS running simulation.

Table 1. Obtained residual wavefront rms.

Photons/subaperture/T Integrator LQG1 LQG2
no noise ∞ ∼268 nm ∼267 nm ∼271 nm
mag 12 ∼320 ∼269 nm ∼268 nm ∼271 nm
mag 14 ∼51 ∼272 nm ∼271 nm ∼273 nm
mag 16 ∼8.0 ∼296 nm ∼297 nm ∼284 nm
mag 17 ∼3.2 ∼350 nm ∼356 nm ∼313 nm
mag 18 ∼1.3 ∼471 nm ∼475 nm ∼438 nm

are equivalent until magnitude 14. In faint conditions (magnitude 16 to magnitude
18) the LQG2 controller induces better performance than the integral controller.

The authors are greatly indebted to the referee Céline Theys, for her helpful and constructive
comments and Anthony Schutz for the computer assistance. The first author would like to thank
Calypso Barnes for her valuable contribution to improve the quality of the english text.
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