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PRINCIPLES OF IMAGE RECONSTRUCTION IN
INTERFEROMETRY

É. Thiébaut1

Abstract. Image reconstruction from interferometric data is an inverse
problem. Owing to the sparse spatial frequency coverage of the data
and to missing Fourier phase information, one has to take into account
not only the data but also prior constraints. Image reconstruction then
amounts to minimizing a joint criterion which is the sum of a likelihood
term to enforce fidelity to the data and a regularization term to impose
the priors. To implement strict constraints such as normalization and
non-negativity, the minimization is performed on a feasible set. When
the complex visibilities are available, image reconstruction is relatively
easy as the joint criterion is convex and finding the solution is similar
to a deconvolution problem. In optical interferometry, only the power-
spectrum and the bispectrum can be measured and the joint criterion
is highly multi-modal. The success of an image reconstruction algo-
rithm then depends on the choice of the priors and on the ability of
the optimization strategy to find a good solution among all the local
minima.

The best angular resolution of a telescope is given by the diffraction limit λ/D
(with D the diameter of the primary mirror and λ the wavelength). For an astro-
nomical interferometer, this limit is λ/B (with B the separation of the telescopes
projected in a plane perpendicular to the line of sight). In the optical, the largest
telescopes have a diameter D ≈ 10 m; thus, with baselines up to B ≈ 600 m,
astronomical interferometers resolve much smaller angular scales, below the mil-
liarcsecond in the H band (1.65 μm). This unrivaled resolution has however a cost:
an interferometer measures only a single spatial frequency per baseline, while a
monolithic telescope harvests all spatial frequencies (up to its diffraction limits)
in a single exposure. The data collected by an interferometer are thus very sparse
and image reconstruction is a mandatory tool to build an image in spite of the
voids in the spatial frequency coverage.
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Inverse problem approach is a very powerful tool for extracting meaningful in-
formation from available data. In particular, it is the method of choice for image
reconstruction from interferometric observables. A power of the inverse approach
is to relax the constraint that the model of the observables be invertible and thus
let us exploit a realistic model. To benefit from this potential, the data model has
to be wisely written knowing the instrument and making relevant approximations.
The direct model of the interferometric observable is developed in the first sec-
tions of this paper. From the instantaneous output of an interferometer (Sect. 1),
time averaging (Sect. 2) yields the expression of the complex visibilities integrated
during an exposure. In the most simple case, that is when complex visibilities
are directly measurable, image reconstruction amounts to solving a deconvolution
problem (Sect. 3). In optical interferometry, atmospheric turbulence introduces
unknown random optical path perturbations which prevent to directly measure
complex visibilities and imposes to integrate observables such as the powerspec-
trum and the bispectrum which are insensitive to such perturbations (Sect. 4).

Owing to the sparsity of the interferometric data and to the missing of part of
the Fourier phases, prior information must be taken into account to solve the image
reconstruction problem in a stable and robust way. Without loss of generality,
image reconstruction can be stated as an optimization problem over a feasible
set (Sect. 5). The penalty to minimize is the sum of a likelihood term (Sect. 6)
which enforces fidelity to the measurements and a regularization term (Sect. 7)
which favors the priors. Finally, it remains to design an optimization algorithm to
effectively solve the image reconstruction problem (Sect. 8).

1 Instantaneous output of an interferometer

In its simplest form, a stellar interferometer (see Fig. 1) consists in two telescopes
(or antennae for an array of radio-telescopes) pointing at the astronomical target
and coherently recombined. By varying the optical path delay between the two
arms of the interferometer, one observes interference fringes. The contrast of
the fringes and their phase are the amplitude and phase of the so-called complex
visibility which is related to the observed object by:

Vj1,j2(λ, t) = g∗j1(λ, t) gj2(λ, t) Îλ(bj1,j2(t)/λ) (1.1)

with j1 and j2 the indexes of the interfering telescopes, λ the wavelength, t the
time, gj(λ, t) the instantaneous complex amplitude transmission for the jth tele-
scope, g∗j (λ, t) its complex conjugate, Îλ(ν) the angular Fourier transform of the
specific brightness distribution Iλ(θ) of the observed object in angular direction θ,
and bj1,j2(t) the projected baseline:

bj1,j2(t) = rj2(t)− rj1(t)

where rj(t) is the position of the jth telescope projected on a plane perpendicular
to the line of sight. The amplitude of the complex transmission gj(λ, t) accounts for
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Fig. 1. Interferometer. Fig. 2. (u, v) coverage with IOTA

3-telescope interferometer in the H band

(from: Lacour et al. 2008). The spatial

frequencies ν are given as the projected

baselines b in mega-wavelength units

(symbol Mλ) that is 106×b/λ = 106×ν.

the efficiency of the transfer of the light from the jth telescope to the recombiner,
the phase of gj(λ, t) accounts for the optical delay along this travel.

Equation (1.1) shows that a stellar interferometer samples the Fourier trans-
form of the brightness distribution Îλ(ν) at the spatial frequency:

νj1,j2(λ, t) = bj1,j2(t)/λ =
(
rj2(t)− rj1(t)

)
/λ .

A single exposure yields one measurement of Îλ(ν) per pair of recombined tele-
scopes per spectral channel. For Ntel telescopes in a non-redundant configuration,
there is a maximum of Ntel (Ntel − 1)/2 different baselines. Thanks to Earth rota-
tion, the sampling of the spatial frequencies – the so-called (u, v) plane – by a given
configuration of telescopes varies with the time, this is called super-synthesis. The
sampled frequencies also depend on the wavelength: the longer the wavelength
the shorter the sampled frequency. Because of the limited number of telescopes
for current optical interferometers (2 ≤ Ntel ≤ 6), even by combining all these
possible measurements, the sampling of the (u, v) plane remains very sparse and
uneven (cf. Fig. 2).

2 Averaging during exposures

The previous equations consider the instantaneous and monochromatic case: they
are given for continuously varying time t, wavelength λ and projected telescope
positions rj(t). In practice, a finite number of measurements are obtained for given
exposure times, spectral channels and telescope combinations. In the sequel, we
use the index m to label the available data: for the m-th measurement (possibly
complex), the exposure time is denoted tm, λm is the effective wavelength of the
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spectral channel and there are up to three interfering telescopes numbered jm,1,
jm,2 and jm,3. Of course different measurements, say m and m′, may have the
same observing times (tm′ = tm) or may share the same telescopes and the same
spectral channel.

Because of the finite exposure time and spectral bandwidth, the instantaneous
and monochromatic complex visibility in Equation (1.1) must be averaged to give
the effective complex visibility:

Vm = 〈Vjm,1,jm,2(λ, t)〉m =
〈
g∗jm,1

(λ, t) gjm,2 (λ, t) Îλ

(
bjm,1,jm,2(t)/λ

)〉
m

(2.1)

where 〈. . .〉m denotes averaging (or integrating) during the exposure and inside
the spectral channel corresponding to the m-th measurement:

〈f(λ, t)〉m def=
1

Δtm

∫ tm+Δtm/2

tm−Δtm/2

1
Δλm

∫
sm(λ) f(λ, t) dλdt (2.2)

with Δtm the duration of the exposure, sm(λ) the transmission of the spectral
channel, and Δλm

def=
∫

sm(λ) dλ the effective spectral bandwidth.
To measure interference patterns, the effective bandwidth Δλm must be such

that the complex amplitude transmissions are approximately constant in each
spectral channel and the exposure duration Δtm must be short enough to neglect
the temporal variation of the baselines. Under these conditions, the double integral
which results from combining Equations (2.1) and (2.2) becomes separable:

Vm =
1

Δtm

∫ tm+Δtm/2

tm−Δtm/2

1
Δλm

∫
sm(λ) g∗jm,1

(λ, t) gjm,2(λ, t)

× Îλ

(
bjm,1,jm,2(t)/λ

)
dλdt

≈ 1
Δtm

∫ tm+Δtm/2

tm−Δtm/2

g∗jm,1
(λm, t) gjm,2(λm, t) dt

× 1
Δλm

∫
sm(λ) Îλ

(
bjm,1,jm,2(tm)/λm

)
dλ

= ĥm Îm(νm) (2.3)

with:

ĥm
def=

1
Δtm

∫ tm+Δtm/2

tm−Δtm/2

g∗jm,1
(λm, t) gjm,2(λm, t) dt , (2.4)

Îm(ν) def=
1

Δλm

∫
sm(λ) Îλ(ν) dλ (2.5)

≈ Îλm(ν) (2.6)

νm
def= bm/λm , (2.7)

bm
def= rjm,2(tm)− rjm,1(tm), (2.8)



É. Thiébaut: Principles of Image Reconstruction in Interferometry 161

respectively the effective interferometric transfer function, the Fourier transform of
the specific brightness distribution integrated in the spectral channel, the spatial
frequency and the effective baseline for the m-th observed complex visibility. The
approximation in Equation (2.6) applies for spectral bandwidths narrower than the
spectral features of the specific brightness distribution. To simplify the notations
but without loss of generality, we will assume that this is the case in what follows.

When the complex amplitude transmissions are stable during and exposure,
the effective interferometric transfer function can be further simplified:

ĥm ≈ g∗jm,1
gjm,2 (2.9)

where:

gjm,i

def=
1

Δtm

∫ tm+Δtm/2

tm−Δtm/2

gjm,i(λm, t) dt ≈ gjm,i(λm, tm). (2.10)

Thus, for monochromatic observations with an interferometer composed of Ntel

telescopes and under stable observing conditions, the effective transfer function
only depends on Ntel − 1 complex numbers (one complex amplitude transmission
can be chosen arbitrarily) per exposure while there are Ntel (Ntel − 1)/2 mea-
sured complex visibilities. Depending on the number of interfering telescopes,
the amount of information needed to estimate the transfer function may be much
smaller than the amount of measurements. This open the possibility to perform
self-calibration (Cornwell & Wilkinson 1981; Schwab 1980).

3 Easy case: image reconstruction ∼ deconvolution

Considering only complex visibilities for a given effective wavelength λ, we can
combine them to form the distribution:

d̂λ(ν) def=
∑

m∈Sλ

Vm δ(ν − νm) (3.1)

with Sλ = {m: λm = λ} and δ(·) the Dirac’s distribution. Using the definition of
the observed complex visibilities Vm in Equation (2.3) and the approximation in
Equation (2.6), d̂λ(ν) can be expanded as follows:

d̂λ(ν) =
∑

m∈Sλ

ĥm Îλm(νm) δ(ν − νm)

= Îλ(ν)
∑

m∈Sλ

ĥm δ(ν − νm)

= Îλ(ν) ĥλ(ν), (3.2)

with:

ĥλ(ν) =
∑

m∈Sλ

ĥm δ(ν − νm). (3.3)
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Fig. 3. From left to right: spatial frequency sampling, dirty beam, object brightness

distribution and dirty image.

Taking the inverse Fourier transform of d̂λ(ν), we obtain a 2D angular distribution
called the dirty image:

dλ(θ) def=
∫∫

d̂λ(ν) e+i 2 π 〈θ,ν〉 d2ν

=
∫∫

ĥλ(ν) Îλ(ν) e+i 2 π 〈θ,ν〉 d2ν

= (hλ ∗ Iλ) (θ) (3.4)

where 〈θ, ν〉 is the 2D scalar product of θ by ν and the symbol ∗ denotes the
convolution product of the brightness distribution Iλ(θ) by the so-called dirty
beam:

hλ(θ) def=
∫∫

ĥλ(ν) e+i 2 π 〈θ,ν〉 d2ν

=
∑

m∈Sλ

ĥm e+i 2 π 〈θ,νm〉. (3.5)

In words, the dirty image dλ(θ), synthesized from the observed complex visibilities,
is simply the convolution of the specific brightness distribution Iλ(θ) by the dirty
beam hλ(θ). Figure 3 shows, for given (u, v)-coverage and observed object, the
resulting dirty beam and dirty image. The dirty beam hλ(θ) is the analogous
of the point spread function (PSF) in conventional imaging; it is however not
a probability density function, in particular, when super-synthesis is exploited,
hλ(θ) is not a normalized non-negative distribution (cf. the negative lobes of the
dirty beam in Fig. 3).

To summarize, when the observables are the complex visibilities Vm and the
transfer function ĥm properly calibrated, Equation (3.4) shows that image recon-
struction amounts to a deconvolution problem (Cornwell 1995). There are however
many unmeasured values – the voids in the coverage of the (u, v)-plane – thus the
problem is, at least, ill-posed and other constraints than the data are required to
warrant the uniqueness and the stability of the solution. The principles of image
reconstruction developed in the remaining sections of this paper can be applied to
solve this inverse problem.
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So far, no considerations have been made regarding the quality of the measure-
ments which may be very variable. In practice, regridding techniques (Sramek &
Schwab 1989; Thompson & Bracewell 1974) are implemented to synthesize a dirty
image with proper weighting of the data according to their confidence levels. By
inverse Fourier transforming the expression of d̂λ(ν) given by Equation (3.1), the
dirty image can be directly synthesized from the complex visibilities data Vm:

dλ(θ) =
∑

m∈Sλ

Vm e+i 2 π 〈θ,νm〉. (3.6)

To take into account the variable quality of the measurements, one can use statis-
tical weights and synthesize the dirty image as:

dλ(θ) =
∑

m∈Sλ

wm Vm e+i 2 π 〈θ,νm〉. (3.7)

where the weights wm are computed according to the variance of the noise. The
corresponding dirty beam then writes:

hλ(θ) =
∑

m∈Sλ

wm ĥm e+i 2 π 〈θ,νm〉. (3.8)

The somewhat idealized case considered here is relevant for radio-astronomy for
which the complex amplitude transmissions gj(λ, t) are stable during an exposure
and can be calibrated. We will see next (Sect. 4) that, due to the atmospheric
turbulence, these assumptions cannot be made in the optical where the situation
is much more involved. In terms of complexity, an intermediate situation arises
when the transfer function ĥm cannot be calibrated. Self calibration methods
(Cornwell & Wilkinson 1981) have been developed to cope with this case and
consist in jointly recovering the complex amplitude transmissions gj(λm, tm), see
Equation (2.10), and the image of the object from uncalibrated complex visibilities.
Self calibration is the analogous of blind deconvolution in conventional imaging
(Campisi & Egiazarian 2007).

4 The effects of turbulence

The atmospheric turbulence induces random variations of the refractive index along
the path traveled by the light (Roddier 1981). These fluctuations affect the mod-
ulus and the phase of the complex transmissions gj(λ, t) during an exposure. For
instance, for an instrument like Amber (Petrov et al. 2007), the modulus |gj(λ, t)|
fluctuates due to the boiling of the speckle pattern in the focal plane of the tele-
scopes which changes the amount of coherent light injected in the optical fibers
which feed the instrument and perform the spatial filtering. The turbulence also
induces random delays in the optical path which affect the phase φj(λ, t) of gj(λ, t).
The variations of the modulus of the complex transmissions can be estimated or
calibrated, e.g. by the photometric channels of Amber. But it is much more
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difficult to estimate the phase errors. The situation is about to improve with the
development of recombinators with phase reference (Delplancke et al. 2003) but,
for now, there are no reliable means to estimate the phase φj(λ, t). This has a pro-
found impact on the kind of measurements provided by an optical interferometer.

Because of the fluctuations of the complex transmissions gj(λ, t) during an
exposure, the approximation in Equation (2.9) no longer applies: the effective
transfer function ĥm is given by Equation (2.4). Then, if the fluctuations of the
phase φj(λ, t) of gj(λ, t) are too important during the exposure, the integrand
in Equation (2.4) becomes randomly distributed around zero and the averaging
during the exposure yields:

ĥm ≈ 0. (4.1)

This means that the complex visibilities cannot be measured when the unknown
random phase fluctuations are too large during an exposure. This is the case
at optical wavelengths. Even if the phase fluctuations are not so important, the
effective transfer function cannot be described by a small number of complex
transmissions. This forbids the use of self-calibration to guess the effective transfer
function: in order to directly exploit the mean complex visibilities, ĥm must be
calibrated simultaneously to the observations. For these reasons, astronomers have
to integrate observables which are insensitive to phase delay errors.

Using very short exposure durations, typically ∼1 ms, compared to the evo-
lution time of the atmospheric effects, the instantaneous complex visibilities can
be measured but with unknown phase terms. The interferometric observables
are then computed by forming, from simultaneously observed complex visibilities,
quantities which are insensitive to the phase of the complex transmissions. These
observables are the powerspectrum:

Pm
def= 〈|Vjm,1,jm,2(λ, t)|2〉m
≈ 〈|gjm,1(λ, t)|2 |gjm,2(λ, t)|2〉m︸ ︷︷ ︸

> 0

|Îλm (νm)|2 (4.2)

and the bispectrum:

Bm
def=

〈
Vjm,1,jm,2(λ, t)Vjm,2,jm,3(λ, t)Vjm,3,jm,1(λ, t)

〉
m

≈ 〈|gjm,1(λ, t)|2 |gjm,2(λ, t)|2 |gjm,3(λ, t)|2〉m︸ ︷︷ ︸
> 0

Î
(3)
λm

(νm, ν′
m) (4.3)

where:

νm = (rjm,2(tm)− rjm,1(tm))/λm ,

ν ′
m = (rjm,3(tm)− rjm,2(tm))/λm ,

and:

Î
(3)
λ (ν, ν′) def= Îλ(ν) Îλ(ν ′) Î∗λ(ν + ν′) (4.4)
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is the bispectrum of the brightness distribution of the object. To be able to
measure the powerspectrum, given by Equation (4.2), two telescopes (jm,1 and
jm,2) have to be coherently recombined; while, to measure the bispectrum, given
by Equation (4.3), three telescopes (jm,1, jm,2 and jm,3) have to be coherently
recombined.

Note that, being non-linear quantities, the empirical powerspectrum and bis-
pectrum have bias terms which are not shown here to simplify the equations.
Dainty & Greenaway (1979) and Wirnitzer (1985) give the expressions of unbiased
estimators for the powerspectrum and for the bispectrum respectively at low light
levels (photon counting mode).

5 Inverse problem approach for image reconstruction

Given the interferometric observables, we want to recover an image, that is an
approximation of the object specific brightness distribution at a given wavelength.
Before going into the details of a method to tackle this problem, we can anticipate
a number of issues and make some preliminary remarks. (i) Due to voids in the
spatial frequency coverage, we are dealing with very sparse data (with typically a
few tens of baselines, see Fig. 2). (ii) Avoiding the turbulence effects implies to use
non-linear data (powerspectrum or bispectrum) which is more difficult to fit than,
say, the complex visibilities. (iii) Compared to the Ntel (Ntel − 1)/2 sampled fre-
quencies per exposure, the powerspectrum provides no Fourier phase information
while the bispectrum only provides (Ntel − 1) (Ntel − 2)/2 phase closures, so there
are missing phase data (with only 3 telescopes, 2/3rd of the phases are missing).
(iv) There may be calibration problems which means that there are additional
unknown factors in the data.

For the sake of simplicity, we will consider in the following the case of monochro-
matic image reconstruction (at a given wavelength λ) and assume that we are
working with debiased and calibrated data. That is, all the effective transfer func-
tions are assumed to be equal to unity and the main problem is to deal with the
sparsity of the data, the missing Fourier phase information and the non-linearity
of the estimators. The possible types of measurements that may be available are:

- complex visibilities: Vm ≈ Îλ(νm);
- powerspectrum data: Pm ≈

∣∣Îλ(νm)
∣∣2;

- bispectrum data: Bm ≈ Î
(3)
λ (νm, ν ′

m);

where the ≈ symbol is used because of omitted error terms.
As all measured quantities are related to the Fourier transform of the specific

brightness distribution, we first need a model of the complex visibilities. This is
the subject of Section 5.1.

On the one hand, due to the noise, exactly fitting the data is pointless and we
expect some discrepancy between actual data and their model given the sought
image. On the other hand, owing to the amount of missing information (sparse
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sampling of the spatial frequencies and, perhaps, only partial Fourier phase infor-
mation), the data alone cannot uniquely define an image: additional priors are
required. Image reconstruction is then a compromise between fidelity to the data
and to the priors; the different formulations of this inverse problem are introduced
in Section 5.2.

We will see that solving the image restoration problem amounts to minimizing
the sum of two terms: a likelihood term to enforce data fidelity and a regulariza-
tion term to promote agreement with the priors. Bayesian inference (Sect. 5.3)
can be invoked to formally derive these terms. Practical derivation of the likeli-
hood term is discussed in Section 6. The regularization is developed in Section 7.
At least because of the necessary flexibility of the regularization2, choosing the
regularization and its tuning parameters is needed. This is briefly discussed in
Section 7.3.

Finally it remains to effectively solve the problem, that is to find the best image
parameters which minimize the given penalized likelihood. Numerical optimization
is introduced in Section 8.

5.1 Image and complex visibilities models

Because of the noise and of the limited number of measurements, it is hopeless
to aim at recovering the specific brightness distribution Iλ(θ) of the observed
object exactly. Instead, a realistic objective is to seek for a good estimate of
an approximation i(θ) of Iλ(θ) which depends on a finite number of parameters.
To that end, the specific brightness distribution in angular direction θ can be
approximated by:

i(θ) def=
∑

n
xn bn(θ) ≈ Iλ(θ) (5.1)

with {bn(θ): R2 �→ R}Nn=1 a basis of functions and x ∈ RN the image parameters.
This general parametrization accounts, for instance, for a pixelized image, for
a wavelet decomposition, etc.. For image reconstruction, it may be the most
convenient to use a shift-invariant basis of functions defined by:

bn(θ) = b(θ − θn) (5.2)

where b(θ): R2 �→ R is a single basis function and G = {θn ∈ R2 | n = 1, . . . , N}
is a grid of evenly spaced positions. If b(θ) is an interpolation function (Thévenaz
et al. 2000), then the image parameters sample the brightness distribution:

xn = i(θn) ≈ Iλ(θn).

The advantage of approximating the specific brightness distribution by the linear
expansion i(θ) given in Equation (5.1) is that its exact Fourier transform is also
linear with respect to the image parameters x:

ı̂(ν) =
∑

n
xn b̂n(ν) ≈ Îλ(ν), (5.3)

2Such flexibility is required because the object of interest is unknown.
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where the hat ̂ denotes the Fourier transformed distribution and ν is the spatial
frequency conjugate of the angular position θ. For any sampled spatial frequency
νm the model complex visibility thus writes:

ym
def= ı̂(νm) =

∑
n

b̂n(νm)xn =
∑

n
Hm,n xn ≈ Îλ(νm) ,

with Hm,n = b̂n(νm). In matrix notation:

y = H · x, (5.4)

where y ∈ CM collects the model complex visibilities at all sampled frequencies
and H ∈ CM×N is a sub-sampled Fourier transform operator. The memory re-
quirement to store the coefficients of the operator H and the computer time needed
to apply H (or its adjoint) both scale as O(M × N). Fast approximations of H
based on the FFT can be used (Fessler & Sutton 2003; Potts et al. 2001) when
M × N is too large. To use these fast approximations, the image model must
be defined with shift-invariant basis functions, see Equation (5.2), on an evenly
spaced grid G.

5.2 Inverse problem formulations

As stated before, image reconstruction is a compromise between various constraints
resulting from the measurements and from prior knowledge. The first of these
constraints is that the image must be compatible with the available data. This
is asserted by comparing the measurements with their model given the image
parameters x. To keep the maximum flexibility and since the model of all the
measured quantities depend on the model complex visibilities y = H · x, we
postulate that, to be compatible with the measurements, the image parameters
must satisfy the following criterion:

fdata(H · x) ≤ η (5.5)

where fdata(y): CM �→ R+ is a measure of the distance between the model complex
visibilities y = H · x and the actual data. The threshold η is chosen to set how
close to the data should be the model. As fdata(y) is a distance, the smaller η the
closer the model to the data. However taking η = 0 would mean that the model
should exactly match the data and thus fit the noise which is undesirable. So we
always want η > 0, depending on the exact definition of fdata(y), the value of the
threshold may vary with, e.g., the noise level and the number of measurements.

The level of agreement with the prior knowledge can be expressed in the same
spirit by specifying a distance fprior(x) and requiring that this distance be as small
as possible providing that the model remains compatible with the data. Formally,
this writes:

x
 = arg min
x∈X

fprior(x) s.t. fdata(H · x) ≤ η, (5.6)

where the feasible set X ⊂ RN is introduced to impose strict constraints such
as the non-negativity of the image. For instance, using bilinear interpolation for
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the approximation in Equation (5.1), the specific brightness distribution i(θ) is
non-negative and normalized if and only if the parameters x are non-negative and
their sum is equal to ξ

def=
∫∫

i(θ) d2θ:

i(θ) ≥ 0 and
∫∫

i(θ) d2θ = ξ ⇐⇒ x ∈ X

with:
X = {x ∈ RN | x ≥ 0,1� · x = ξ}, (5.7)

where the inequality x ≥ 0 is taken componentwise and where 1 is the vector of
RN with all components equal to 1:

x ≥ 0 ⇐⇒ ∀n, xn ≥ 0

1 = (1, . . . , 1)� =⇒ 1� · x =
∑

n
xn.

The constrained problem (5.6) is usually solved via the Lagrangian (Nocedal &
Wright 2006):

L(x; �) = fprior(x) + � fdata(H · x)

with � ≥ 0 the Lagrange multiplier for the inequality constraint fdata(H · x) ≤ η.
Assuming that L(x; �) has a unique reachable minimum on the feasible set, we can
define:

x+
L(�) def= arg min

x∈X

L(x; �) ,

and seek for the value �
 ≥ 0 of the multiplier such that the solution x
 = x+
L(�
)

complies with the constraints. Obviously, we want �
 > 0 otherwise the data
play no role in the determination of the solution. Intuitively, having the solution
strictly closer to the data than required, i.e. fdata(H ·x
) < η, yields a worst value
of fprior(x
) than having fdata(H · x
) = η. Thus, unless the a priori solution:

xprior
def= argmin

x∈X

fprior(x)

is such that fdata(H · xprior) ≤ η, in which case the solution is (x
, �
) = (xprior, 0),
the solution to the problem (5.6) is given by x
 = x+

L(�
) with �
 > 0 such that
fdata(H · x
) = η.

Since the solution is obtained for a Lagrange multiplier strictly positive, we
can take μ = 1/� and alternatively define the solution to be given by minimizing
another penalty function:

x+
f (μ) = argmin

x∈X

f(x; μ) with: f(x; μ) = fdata(H · x) + μ fprior(x) . (5.8)

The solution is then x
 = x+
f (μ
) where the optimal weight μ
 > 0 for the priors

is such that fdata(H · x
) = η. The two different formulations are equivalent and
yield the same solution of the constrained problem (5.6).

We shall now see how to derive the expression of the distances fdata(H ·x) and
fprior(x).
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5.3 Bayesian inference

The previous considerations may found strong theoretical justification in a Bayesian
framework where probabilities represent any available information. For instance,
in a maximum a posteriori (MAP) approach, the best image parameters xMAP are
the most likely ones given the data z:

xMAP = argmax
x

Pr(x|z),

where Pr(x|z) denotes the probability (or the probability density function) of x
given z. Note that the data z collects all measurements; in our case, z may
include complex visibilities, powerspectra and bispectra. Using Bayes theorem3,
discarding terms which do no depend on x and noting that − log(p) is a strictly
decreasing function of p yields:

xMAP = arg max
x

Pr(z|x) Pr(x)
Pr(z)

= arg max
x

Pr(z|x) Pr(x)

= arg min
x

− log(Pr(z|x))− log(Pr(x)).

Hence:

xMAP = arg min
x

fz|x(x) + fx(x), (5.9)

with:

fz|x(x) = − log(Pr(z|x)) (5.10)
fx(x) = − log(Pr(x)). (5.11)

In words, the MAP solution xMAP is a compromise between maximizing the like-
lihood of the data z given the model parameters x and maximizing the prior
probability of the model. Said otherwise, the compromise is between fitting the
data, i.e. minimize fz|x(x), and agreement with prior knowledge, i.e. minimize
fx(x).

Finally, the solution x+
f (μ) of the problem (5.8) is also the MAP solution xMAP

if we take:

fdata(H · x) = c′0 + c1 fz|x(x) (5.12)
μ fprior(x) = c′′0 + c1 fx(x) (5.13)

with c′0, c′′0 and c1 > 0 any suitable real constants. From this close relationship,
we deduce a possible way to define the penalty functions fdata(H ·x) and fprior(x).
This is the subject of the next two sections.

3Bayes theorem states that the joint probability of A and B writes:

Pr(A, B) = Pr(A) Pr(B|A) = Pr(B) Pr(A|B).
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6 Likelihood of the data

Ideally, the likelihood should be strictly based on the noise statistics of the data:

fdata(H·x) def= c′0 − c1 log(Pr(z|H·x)).

If the measurements have Gaussian statistics, then for c1 = 2 and for an appro-
priate choice of c′0, the likelihood term is a so-called χ2 given by:

fdata(H·x) = [z − z̃(H·x)]� ·W · [z − z̃(H·x)],

where z̃(H·x) is the model of the measurements z and W is a weighting matrix
equal to the inverse of the covariance of the measurements: W = Cov{z}−1. Our
notation accounts for the fact that the model of the measurements only depends
on the model complex visibilities H·x and assumes that all measurements are real
valued (any complex valued data has to be considered as a pair of reals).

A first difficulty is that the statistics of real interferometric measurements is
not well known and may not be Gaussian at all. For instance, Figure 4 shows
the empirical distribution of bispectrum data. At low signal to noise ratio (SNR),
the distribution may be well approximated by a Gaussian distribution; while, at
high SNR, the banana shaped distribution of the data suggests that the amplitude
and phase of the complex bispectrum may be independent variables. Figure 5
shows that this banana shaped distribution can only be grossly approximated by
a Gaussian with respect to the real and imaginary parts of the bispectrum data.

A second difficulty is that not all statistical information is provided with the
data. Generally, only estimates of the error bar (standard deviation) of each mea-
surement is available. In particular no information is stored about the correlation
of the measurements. This is the case of data stored into the OI-FITS format, a
data exchange standard for optical interferometry (Pauls et al. 2005). Without
any measured correlations, one is obliged to assume that measurements are inde-
pendent variables (for the powerspectrum data) or pairs of variables (for complex
data like the complex visibilities and the bispectra). The likelihood term is then
a sum of terms, one for each independent subset of data:

fdata(H·x) =
∑
m

fm(zm − z̃m(H·x))

where each elementary datum zm is either a real or a pair of reals (amplitude and
phase or real and imaginary parts of a complex measurement).

In the most simple case, the data consists in independent calibrated complex
visibilities with independent and identically distributed (i.i.d.) real and imaginary
parts (the so-called Goodman approximation, Goodman 1985). The likelihood
term then writes:

fdata(H·x) =
∑
m

wm |zm − (H·x)m|2

with wm = 1/ Var{Re{zm}} = 1/ Var{Im{zm}} and |zm − (H·x)m| the mod-
ulus of the complex residuals. In matrix notation and providing the Argand
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representation4 of the complex visibilities is used, the likelihood can be put in
the form of a quadratic cost function with respect to the unknowns x:

fdata(H·x) = (z −H·x)� ·W · (z −H·x)

where W is block diagonal matrix with 2 × 2 blocks. This is suitable for radio-
astronomy data but not for current optical interferometers. See, for instance,
Meimon et al. (2005a) and Thiébaut (2008) for various approximate expressions
of the likelihood term. Note that Goodman approximation would give circular
isocontours in Figure 5.

For complex data zm = ρm exp(i ϕm) in polar form with independent modulus
and phase, Meimon et al. (2005a) suggested to use a quadratic approximation of
the likelihood:

fm(H · x) = em(H · x)� ·
(

W rr
m W ri

m

W ri
m W ii

m

)
· em(H · x), (6.1)

with the weights:

W rr
m =

cos2 ϕm

Var{ρm}
+

sin2 ϕm

ρ2
m Var{ϕm}

, (6.2)

W ri
m =

(
1

Var{ρm}
− 1

ρ2
m Var{ϕm}

)
cosϕm sin ϕm , (6.3)

W ii
m =

sin2 ϕm

Var{ρm}
+

cos2 ϕm

ρ2
m Var{ϕm}

, (6.4)

and the complex residuals:

em(H · x) =
(

ρm cosϕm − ρ̃m(H·x) cos ϕ̃m(H·x)
ρm sin ϕm − ρ̃m(H·x) sin ϕ̃m(H·x)

)
(6.5)

where the tilde indicates the model of a given measurement. The expression of the
likelihood in Equation (6.1) can be used for complex visibilities Vm or bispectrum
data Bm in polar form as provided by OI-FITS format. However note that this
yields a non-quadratic penalty for the bispectrum.

Some algorithms ignore the measured amplitudes of the bispectrum and only
consider the bispectrum phase βm = arg(Bm) to provide Fourier phase information
for the image reconstruction, the Fourier amplitude information being provided by
the powerspectrum data. In this case, practical expressions of the likelihood with
respect to such kind of data must be introduced. In MiRA algorithm (Thiébaut
2008), powerspectrum data are treated as independent Gaussian variables, the
likelihood for the measured powerspectrum Pm then writes:

fm(H · x) =

(
Pm − P̃m(H · x)

)2

Var{Pm}
· (6.6)

4Real and imaginary parts.
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Fig. 4. Empirical distribution of complex bis-

pectrum data at low (left and high (right) signal

to noise ratio (SNR). Horizontal axis is the real

part, vertical axis is the imaginary part.

e
e

ϕ

ρ
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Fig. 5. Convex quadratic approxi-

mations of the true distribution of

errors for a complex measurement.

Thick lines: χ2 isocontours (at 1, 2

and 3 rms levels) for a complex data

with independent amplitude and

phase. Dashed lines: isocontours

for the global quadratic approxima-

tion. Thin lines: isocontours for

the local quadratic approximation.

(Meimon et al. 2005a).

In order to account for phase wrapping and to avoid excessive non-linearity, the
term related to the phase closures data is defined by MiRA to be the weighted
quadratic distance between the complex phasors rather than between the phases
closures:

fm(H · x) =
1

Var{βm}
∣∣∣ei βm − ei β̃m(H·x)

∣∣∣2 . (6.7)

In the limit of small phase closure errors, the penalty becomes:

fm(H · x) ≈

[
βm − β̃m(H · x)

]2

Var{Pm}
(6.8)

which is readily the χ2 term that would be obtained for Gaussian phase statis-
tics. This justifies the weighting used in Equation (6.7). Other expressions of the
likelihood with respect to phase data have been proposed to cope with the phase
wrapping (Haniff 1991; Lannes 2001) but, in practice, they give penalties which
slow down or even prevent the convergence of the optimization algorithm.

For optical interferometry which only provides powerspectrum and
bispectrum data, the likelihood term fdata(H·x) is highly non-quadratic, e.g. see
Equations (6.6) and (6.7). This will give rise to optimization issues when fitting
the data. Before tackling these issues, let us discuss the second penalty term, that
is the regularization.



É. Thiébaut: Principles of Image Reconstruction in Interferometry 173

7 Regularization

In principle, the regularization penalty could be derived from Bayesian considera-
tions (see Sect. 5.3):

μ fprior(x) = c′′0 − c1 log(Pr(x)). (7.1)

with c′′0 any real constant and c1 > 0 the same constant as in the previous section.
However, introducing a prior probability density function of the parameters which
is sufficiently general for all possible observed objects would yield highly uninfor-
mative priors which do not really help finding a satisfying image. To be effective,
the regularization has to be more restrictive which implies to make more specific
assumptions about the object brightness distribution. Besides, even if we knew
the object quite exactly, we would like that the prior penalty be at least insensitive
to the observing conditions, thus to the position of the object, its orientation and
its distance (i.e. its angular size and its integrated brightness).

7.1 Simple quadratic regularization

Let us examine the consequences of these elementary considerations. To simplify
our reasoning, we consider the pixel-oriented image model:

xn = i(θn) ≈ Iλ(θn),

and assume that the parameters x follow a Gaussian distribution5, then:

fx(x) = − log(Pr(x))

= c + (1/2) (x− x)� ·C−1
x · (x− x) (7.2)

where x = E{x} is the expected value of x, Cx = Cov(x) its covariance and

c =
1
2

log
[
det

(
Cx

2 π

)]
is a constant due to the normalization of Pr(x) and which does not depend on x.

From the principle that the regularization shall be shift-invariant, the covari-
ance (Cx)n,n′ between the nth and the n′th pixels must only depend on their
relative position θn − θn′ ; moreover, since the regularization shall be isotropic, it
must only depend on the relative distance ‖θn − θn′‖. This is also true for the
inverse of the covariance matrix, thus:(

C−1
x

)
n,n′ = α ζ(‖θn − θn′‖/Ω) (7.3)

5Which cannot be really true because of the non-negativity and, perhaps, normalization
constraints.
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where α > 0 is a scaling factor, ζ: R+ �→ R is a function of the relative angular
separation between the pixels and Ω is a typical angular size. From the require-
ments that the prior shall not depend on the absolute brightness of the object, nor
on its angular size, the factor α shall scale as the reciprocal of the square of the
object brightness and Ω shall scale as the angular size of the object.

As the regularization shall be shift-invariant, the mean must not depend on
the pixel index, hence:

x = β 1, (7.4)

where β is the mean pixel brightness. Noting that:

(xn − xn′)2 = [(xn − β)− (xn′ − β)]2

= (xn − β)2 + (xn′ − β)2 − 2 (xn − β) (xn′ − β)

=⇒ (xn − β) (xn′ − β) = (1/2) [(xn − β)2 + (xn′ − β)2 − (xn − xn′)2] ,

the prior penalty fx(x) in Equation (7.2) writes:

fx(x) = c + (1/2) (x− β 1)� ·C−1
x · (x− β 1)

= c +
1
2

∑
n,n′

(
C−1

x

)
n,n′ (xn − β) (xn′ − β)

= c +
μ0

2

∑
n

(xn − β)2 +
1
2

∑
n<n′

μn,n′ (xn − xn′)2 (7.5)

with:

μ0 =
∑

n

(
C−1

x

)
n,n′ =

∑
n′

(
C−1

x

)
n,n′ (7.6)

μn,n′ = −
(
C−1

x

)
n,n′ (7.7)

where the two equivalent expressions for μ0 come from the fact that the covariance
matrix is symmetrical and so is its inverse.

Taking c1 = 2 (as for the likelihood in Sect. 6) and c′′0 = −c1 c, yields the
quadratic regularization term:

μ fprior(x) = μ0

∑
n

(xn − β)2 +
∑
n<n′

μn,n′ (xn − xn′)2 . (7.8)

These simple and general considerations lead us to the quadratic regularization in
Equation (7.8) which has the required properties (shift-invariance, isotropy, etc.)
and which is parametrized by so-called hyper-parameters: α, β (both related to the
object brightness), Ω (the size of the object) and ζ: R+ �→ R the relative weighting
function. If we take μ = μ0 > 0, β = 0 and μn,n′ = 0, ∀(n, n′), then we obtain the
most simple form of Tikhonov’s regularization (Tikhonov & Arsenin 1977):

fprior(x) =
∑

n

x2
n = ‖x‖22.
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Fig. 6. Image reconstruction with various types of regularization. From left to right:

(a) original object smoothed to the resolution of the interferometer (FWHM ∼ 15 mas);

(b) reconstruction with a quadratic regularization given by Equation (7.9) and which

imposes a compact field of view; (c) reconstruction with edge-preserving regularization

as in Equation (7.10); (d) reconstruction with maximum entropy regularization as in

Equation (7.12). All reconstructions by algorithm MiRA (Thiébaut 2008) and from the

powerspectrum and the phase closures data of the 2004’ Imaging Beauty Contest (Lawson

et al. 2004).

Whereas if we take μ0 = 0 and μn,n′ ≥ 0 a decreasing function of the distance
between the nth and the n′th pixels, then we obtain a regularization which favors
solutions where nearby pixels have similar values hence the smoothness of the
restored image.

7.2 A marketplace for regularization

The Gaussian assumption for the prior distribution of the image parameters yields
quadratic regularizations, like the one in Equation (7.8), which are easy to min-
imize numerically. However such regularizations alone6 are not very efficient to
interpolate missing data when dealing with sparse interferometric data. They
are also not the best choice to restore some features of the observed objects, in
particular point-like sources or sharp edges. Non-quadratic regularizations have
been proposed which may be more suitable for sparse data and images with sharp
structures.

The most useful regularizations for image restoration are shift-invariant, (ap-
proximately) isotropic and parametrized by a few hyper-parameters. However,
in the case of optical interferometry data where the observables (powerspectrum
and bispectrum) are insensitive to the position of the object, it may be useful to
introduce a shift-variant regularization to fix this degeneracy (see the compactness
regularization below proposed by le Besnerais et al. 2008).

It is impossible to give an exhaustive list of regularizations, but for image
restoration, in particular from interferometric data, the following prior penalties
have been used with some success:

Quadratic smoothness is imposed by minimizing the differences between close
pixels. This is achieved with:

fprior(x) = ‖D · x‖22

6Without the strict constraints imposed by the feasible set X.
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where D is a finite difference operator. For instance, in 1-D:

(D · x)n = xn+1 − xn

and in 2-D:

(D · x)n1,n2 =
(

xn1+1,n2 − xn1,n2

xn1,n2+1 − xn1,n2

)
.

This regularization is specific instance of Equation (7.8) with μ0 = 0 and

μn,n′ = μ [δ(n1 + 1− n′
1) δ(n2 − n′

2) + δ(n1 − n′
1) δ(n2 + 1− n′

2)].

A similar result can be obtained with:

fprior(x) = ‖x− S · x‖22
where S is a smoothing operator.

Compactness can be achieved with

fprior(x) =
∑

n
wprior

n x2
n, (7.9)

where wprior
n ≥ 0 are given weights. If the weights increase with the distance

to a given position (for instance, wprior
n ∝ ‖θn‖β with β > 0), this regular-

ization favors a compact brightness distribution with its flux concentrated
around this position. In the Fourier domain, this yields spectral smoothness
which may be very helpful to interpolate the voids in the (u, v)-coverage.

If the weights are all strictly positive, it can be shown (le Besnerais et al.
2008) that the default solution:

xprior def= arg min
x∈X

∑
n

wprior
n x2

n

on the feasible set X given in Equation (5.7) is simply:

xprior
n ∝ 1/wprior

n

where the constant of proportionality is such that the normalization con-
straint is satisfied.

Non-linear smoothness can be imposed with the following general expression:

fprior(x) =
∑

n

√
‖∇xn‖2 + ε2 (7.10)

where ‖∇xn‖2 is the squared magnitude of the spatial gradient in the image
at nth pixel and ε ≥ 0. Taking ε = 0 yields the so-called total variation (TV)
regularization which favors flat regions separated by sharp edges (Rudin
et al. 1992). Otherwise, taking ε > 0 yields edge-preserving smoothness
(Charbonnier et al. 1997) which behaves as a quadratic smoothness prior
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in region where the spatial gradient of the image is smaller than ε in mag-
nitude, while preserving sharp edges elsewhere. The actual expression in
Equation (7.10) depends on the approximation of the spatial gradient which
is usually implemented via a finite difference operator: ∇xn = Dn · x
(Chambolle et al. 2011). There are also other possibilities to achieve edge-
preserving regularization (see e.g., Charbonnier et al. 1997).

Spatial sparsity can be imposed thanks to separable �p norms:

fprior(x) =
∑

n
|xn|p, (7.11)

with p ≥ 0. If p < 1, minimizing the �p norm favors sparse distribution,
while p = 2 corresponds to regular Tikhonov regularization (Tikhonov &
Arsenin 1977) and favors flat distributions. Note that p must be greater or
equal 1 to have a convex criterion. Taking the smallest such p, that is p = 1,
is what is advocated in compress sensing (Donoho 2006).

Maximum entropy methods (MEM) have been proposed for radio-astronomy
and exploit a separable non-linear regularization with the general form:

fprior(x) = −
∑

n
h(xn|xn). (7.12)

Here the prior is to assume that the image is drawn toward a prior model x
according to a non-quadratic potential h, called the entropy. Various entropy
terms have been proposed in the literature (Narayan & Nityananda 1986):

MEM-sqrt: h(x|x) =
√

x;
MEM-log: h(x|x) = log(x);
MEM-prior: h(x|x) = x− x− x log (x/x) .

Being separable, the expression in Equation (7.12) assumes that the pixel
values are uncorrelated. To impose some level of smoothness in the solution,
Horne (1985) has proposed a non-separable MEM regularization by defin-
ing the prior model x as a smoothed version of the model x, for instance:
x = S · x with S a smoothing operator.

7.3 Choosing and tuning the regularization

As we have just seen, there are many different possible expressions for the regu-
larization term. Since the exact statistics of the sought object is seldom known,
the regularization has to be chosen on the basis of general properties that one
expect to see in the sought image. In the case of interferometric imaging, Renard
et al. (2011) have compared the regularization methods presented in the previous
section. As expected they concluded that the best prior depends on the object
of interest. However, non-linear smoothness, in Equation (7.10), and compact-
ness combined with non-negativity constraints, in Equation (7.9), are the most
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Fig. 7. Image reconstruction with 
2 compactness and for various levels of regularization.

The optimal regularization level is μ+ (source: Renard et al. 2011).

successful regularizations in general. Figure 6 shows that images restored with
different types of regularization are fairly similar. This is a general observation:
providing there are sufficient data and the hyper-parameters are correctly set (see
below), the restored image either succeeds to approximate the object or clearly fails
(Renard et al. 2011). In practice, it is fruitful to exploit the variety of regular-
ization types to determine which one is most adapted to the object of interest.
Comparing images obtained under different priors is also useful to disentangle be-
tween artifacts and real features. One must however keep in mind that, among
other properties, the priors must be able to lift the degeneracies of the inverse
problem and to regularize it, that is to warrant a unique and stable solution with
respect to small perturbations such as those due to the noise.

In addition to the choice of the form of the regularization itself, there are
tuning parameters: the weight μ of the regularization, and perhaps some other
hyper-parameters (e.g. the relaxation parameter ε in the edge-preserving regular-
ization below). Ideally one would like to set these hyper-parameters automatically
according to some objective criterion. Although several unsupervised methods
have been proposed for setting the hyper-parameters, this is still a vivid research
subject and no methods is at the same time robust and easy to apply. When there
are few hyper-parameters, visual assessment of the result is often sufficient to cor-
rectly set these parameters. For instance, Figure 7 shows the effects of tuning the
level of regularization μ. Compared to the optimal setting (central panel in Fig. 7),
if the weight of the regularization is too small, many artifacts due to the voids in
the (u, v) coverage contaminate the image (left panel in Fig. 7). On the contrary,
if the weight of the regularization is too important, the image becomes too flat
(right panel in Fig. 7). Although this depends on the particular regularization
implemented.

8 Optimization strategy

We have seen that image reconstruction amounts to solving:

min
x∈X

{μ fprior(x) + fdata(H · x)}︸ ︷︷ ︸
f(x)

· (8.1)
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In the case of optical interferometric data, this constrained optimization problem
depends on a very large number of parameters (the image pixels), is highly non-
linear7 and multi-modal (has multiple minima). Solving such a problem requires
global optimization or a good starting point followed by continuous optimization.
It is remarkable that existing image reconstruction algorithms implement not only
different priors but also different strategies to search the solution.

CLEAN (Högbom 1974) was initially developed for radio-interferometry (i.e.
for complex visibility data) and exploits a matching pursuit algorithm to iteratively
build the image by modifying a single pixel at every iteration. The building-blocks
method (Hofmann & Weigelt 1993) is an adaptation of the CLEAN algorithm to
deal with bispectrum data. The assumption made by these two methods is that
the object of interest mainly consists in point-like sources. Using the regulariza-
tion given by Equation (7.11) with p = 1 (i.e. taking the �1 norm of the pixels
as the prior penalty) yields a similar result and produces a spatially sparse so-
lution. Introducing such a continuous regularization, although not smooth, gives
the opportunity to use optimization strategies much more efficient than matching
pursuit algorithms (Thiébaut et al. 2012).

Wisard (Meimon et al. 2005b) implements a kind of self-calibration strategy
alternating between (i) estimating the missing Fourier phases given the object and
the phase closures to complete the data and produce pseudo-complex visibility
data, and (ii) image reconstruction given these pseudo-data and the priors.

MACIM (Markov Chain Imager, Ireland et al. 2008) generates a stochastic
sampling of the posterior probability

Pr(x|z) ∝ Pr(z|x) Pr(x)

by means of a Monte-Carlo Markov Chain (MCMC) algorithm. The image samples
can then be used to find the mode of the distribution (which gives the most likely
solution) or to compute the posterior mean of the sought image (which gives the
image which minimizes the mean quadratic error). For large size problems, MCMC
may however take prohibitive computational time to generate good samples of the
posterior distribution.

Wipe (Lannes et al. 1997), BSMEM (Baron & Young 2008; Buscher 1994) and
MiRA (Thiébaut 2008) directly minimize the penalty in Equation (8.1) by means
of non-linear conjugate gradient algorithm, sub-space method (Skilling and Bryan
1984) or quasi-Newton methods (Nocedal & Wright 2006). These optimization
algorithms can deal with non-linear penalties with very large number of parameters
and, possibly, with constraints such as non-negativity. A change of variables can
be introduced to implement the normalization constraint (le Besnerais et al. 2008).
To my knowledge, Wipe can only cope with complex visibility data and has not
been adapted to deal with optical interferometry data.

In an attempt to unify direct optimization and self-calibration approaches to
solve the image reconstruction problem (8.1), we describe next another

7Which means that the joint criterion f(x) is non-quadratic.
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optimization strategy that can be adapted to any type of data and priors. The
method follows the Alternating Direction Method of Multipliers (ADMM, Gabay
& Mercier 1976) and consists in alternatively minimizing the two terms fprior(x)
and fdata(y) subject to the constraint y = H · x.

8.1 Augmented Lagrangian

Solving the image reconstruction problem (8.1) by direct minimization is exactly
the same as solving the constrained problem:

min
x∈X,y

{μ fprior(x) + fdata(y)} s.t. H · x = y (8.2)

where the model complex visibilities y = H · x have been explicitly introduced as
auxiliary variables. This will allow us to treat separately the specificity of fprior(x)
and fdata(y), in particular their non linearity or lack of smoothness.

A standard approach to solve the constrained problem (8.2) is to use the
Lagrangian of the problem:

L(x, y, u) = μ fprior(x) + fdata(y) + u� · (H · x− y) ,

with u the Lagrange multipliers associated to the constraints H · x = y. For a
solution {x
, y
, u
} of the problem, the necessary conditions of optimality, the
so-called Karush-Kuhn-Tucker (KKT) conditions, write:

H · x
 = y
 (8.3)
0 ∈ ∂xL(x
, y
, u
) (8.4)
0 ∈ ∂yL(x
, y
, u
) (8.5)

where ∂ denotes the subdifferential operator Boyd et al. (2010) which only con-
tains the gradient of its argument if it is differentiable. For instance, if the
Lagrangian is differentiable with respect to variables x, the second KKT condition
in Equation (8.4) becomes:

∇xL(x
, y
, u
) = 0.

Using the Lagrangian involves searching the optimal multipliers u
 such that min-
imizing the Lagrangian with respect to the variables (x, y) given the multipliers
yields a solution matching the constraints. However, finding the optimal multipli-
ers requires to solve a system of M (the number of observed baselines) non-linear
equations which is much more involved than finding a single root as required by
the constrained problem in Section 5.2.

Unless a closed form solution exists, it is easier to solve the constrained prob-
lem (8.2) by using the augmented Lagrangian (Hestenes 1969; Powell 1969):

LA(x, y, u; ρ) = L(x, y, u) + (ρ/2) ‖H · x− y‖22 (8.6)

with ρ > 0 the weight of the augmented penalty to reinforce the constraints.
Obviously for any variables matching the constraints, i.e. such that H · x = y,



É. Thiébaut: Principles of Image Reconstruction in Interferometry 181

the Lagrangian and the augmented Lagrangian are equal; thus they both yield
the same solution. Solving the constrained problem (8.2) via the augmented
Lagrangian however has a number of practical advantages compared to using the
Lagrangian: (i) it provides an explicit update formula for the multipliers (see
Eq. (8.7) in Algorithm 1), (ii) it owns strong convergence properties for ρ large
enough even for non-smooth penalties, (iii) it can be exploited to derive a simple
yet efficient algorithm based on alternate minimization (see Algorithm 2).

Solving the image reconstruction problem (8.2) via the augmented Lagrangian
and simply considering the variables x and y as a single group of variables yields
the following algorithm:

Algorithm 1: Augmented Lagrangian algorithm for solving (8.2). Choose
initial multipliers u0. Then, for k = 0, 1, . . ., repeat the following steps until
convergence:

1. Choose augmented penalty parameter ρk > 0 and improve the variables:{
xk+1, yk+1

}
≈ arg min

x∈X,y
LA (x, y, uk; ρk) .

2. Update the multipliers:

uk+1 = uk + ρk

(
H · xk+1 − yk+1

)
. � (8.7)

8.2 Alternating direction method of multipliers

Algorithm 1 involves minimizing the likelihood and the regularization at the same
time which has not much practical interest compared to directly minimizing
Equation (8.1) with respect to x. The minimization becomes easier if one considers
the penalties fprior(x) and fdata(y) separately. To that end, Step 1 of Algorithm 1
can be implemented thanks to alternating minimization, for instance:

xk+1 = arg min
x∈X

LA(x, yk, uk; ρk),

followed by

yk+1 = arg min
y

LA(xk+1, y, uk; ρk).

This imposes to choose an initial value y0 for the auxiliary variables y. If an
initial image x0 is available, the order of updating x and y can be exchanged.
Alternating minimization yields the following algorithm:

Algorithm 2: Alternate Direction Method of Multipliers (ADMM) algorithm
for solving (8.2). Choose initial multipliers u0 and initial complex visibilities y0.
Then, for k = 0, 1, . . ., repeat the following steps until convergence:
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1. Image Reconstruction Step. Choose the augmented penalty parameter
ρk > 0 and approximately find the best image given the complex visibilities
and the Lagrange multipliers:

xk+1 ≈ arg min
x∈X

LA (x, yk, uk; ρk) .

2. Self Calibration Step. Approximately find the best complex visibilities
given the image and the Lagrange multipliers:

yk+1 ≈ argmin
y

LA (xk+1, y, uk; ρk) .

3. Updating of the Lagrange Multipliers. Apply the following formula to
update the multipliers:

uk+1 = uk + ρk

(
H · xk+1 − yk+1

)
. � (8.8)

Before going into the details of the algorithm, let us remark that by elementary
manipulations, the augmented Lagrangian can be rewritten as:

LA(x, y, u; ρ) = μ fprior(x) + fdata(y) + u� · (H · x− y) +
ρ

2
‖H · x− y‖22

= μ fprior(x) + fdata(y) +
ρ

2
‖H · x− y + u/ρ‖22 −

1
2 ρ
‖u‖22. (8.9)

8.2.1 Image reconstruction step

Discarding in Equation (8.9) terms which do not depend on the variables x, Step 1
of Algorithm 2 consists in improving x given the other variables and writes:

xk+1 = argmin
x∈X

LA(x, yk, uk; ρk)

= argmin
x∈X

μ fprior(x) + (ρk/2) ‖H · x− yk + uk/ρk‖22

= argmin
x∈X

(μ/ρk) fprior(x) + (1/2) ‖H · x− vk‖22 (8.10)

with: vk = yk − uk/ρk , (8.11)

which is the analogous of image reconstruction given pseudo-complex visibilities
vk = yk − uk/ρk with i.i.d. Gaussian noise of variance ∝ μ/ρk. Note that, if the
feasible set is just RN , the right hand side of Equation (8.10) is the value returned
by the proximity operator8 of (μ/ρk) fprior at vk (Combettes & Pesquet 2011).

8The proximity operator of f : RN �→ R is defined by:

proxf (v) = arg min
x

{
f(x) + (1/2) ‖x − v‖2

2

}
.
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Depending on the particular regularization fprior(x), a specific algorithm may
be designed to efficiently solve this problem. If the regularization is quadratic,
Equation (8.10) is a large scale quadratic problem which can be solved by exist-
ing methods like the gradient projection conjugate gradient algorithm (GPCG by
Moré & Toraldo 1991). Otherwise, for a number of non smooth fprior(x), there
exist closed form solutions of Equation (8.10) with X = RN (Combettes & Pesquet
2011) which can be adapted to account for non negativity constraint (Thiébaut
et al. 2012).

8.2.2 Updating the complex visibilities

Discarding in Equation (8.9) terms which do not depend on the auxiliary variables
y, Step 2 of Algorithm 2 consists in improving y given the other variables and
writes:

yk+1 = arg min
y

LA(xk+1, y, uk; ρk)

= arg min
y

fdata(y) + (ρk/2) ‖H · xk+1 − y + uk/ρk‖22

= arg min
y

fdata(y) + (ρk/2) ‖y −wk‖22 (8.12)

with: wk = H · xk+1 + uk/ρk (8.13)

which enforces the complex visibilities y to be a compromise between the actual
data and the shifted model complex visibilities wk = H · xk+1 + uk/ρk. If there
are missing data (for instance, incomplete Fourier phases when working with the
bispectrum or the phase closures and the powerspectrum), this step is nevertheless
a well posed problem thanks to the augmented term (ρk/2) ‖y −wk‖22.

8.3 Conclusions about optimization strategy

Steps 1 and 2 of Algorithm 2 are the analogous of the image reconstruction and self-
calibration steps in self-calibration methods (Cornwell & Wilkinson 1981; Meimon
et al. 2005b; Schwab 1980). However, to really mimic these latter methods, these
steps should be carried out in Algorithm 2 with the Lagrange multipliers always
equal to zero. Formally, this means that standard self-calibration methods do not
consistently solve a well defined optimization problem. This is not the case of
the proposed approach where the self-calibration step accounts for the Lagrange
multipliers which are associated to the constraints that H · x = y.

Although global optimization is in principle required to solve Equation (8.1),
the most successful algorithms proposed for optical interferometry BSMEM (Baron
& Young 2008) and MiRA (Thiébaut 2008) use direct optimization. They how-
ever implement numerical optimization algorithms designed for smooth penalties9.

9Smooth means here twice continuously differentiable.
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Thanks to the variable splitting trick, Algorithm 2 handles separately the speci-
ficities of fprior(x) and fdata(y). As a consequence, it can efficiently cope with
non-smooth penalties such as the ones used to impose sparsity. Moreover, the
augmented penalty term introduces a simple quadratic term which regularizes the
minimization of fprior(x) and that of fdata(y). This makes theses sub-optimization
problems well posed and may speed up their numerical solving.

9 Summary and perspectives

After describing the type of measurements which can be acquired with an inter-
ferometer and the specific issues due to the turbulence. We addressed the inverse
problem of synthesizing an image from these data. The inverse approach provided
us a useful framework to derive a kind of recipe for image reconstruction. This
recipe involves:

1. A direct model of the observables z given the image parameters x. This
model implements an approximation of the brightness distribution Iλ(θ)
and its Fourier transform Îλ(ν) from which is derived the linear relationship
y = H · x between the sampled complex visibilities ym = Îλ(νm) and the
image parameters.

2. A criterion to be minimized to determine a unique and stable solution.
This criterion takes the form f(x) = fdata(H ·x)+μ fprior(x) and reflects the
compromise between fidelity to the data, i.e. minimizing fdata(H ·x), and to
the priors, i.e. minimizing fprior(x). The hyper-parameter μ > 0 is used to
tune this trade-off. Eventually, a feasible set X can be introduced to account
for strict constraints such as non negativity or normalization of the solution.

3. An optimization strategy to solve the constrained optimization problem.

The same general framework can been used to describe most (if not all) inter-
ferometric image reconstruction algorithms (le Besnerais et al. 2008; Thiébaut
& Giovannelli 2010; Thiébaut 2009) so the issues encountered while cooking the
recipe are also general and have their counterparts in all proposed methods.

In this short presentation, we mainly focused on the so-called analysis approach
to reconstruct a non-parametric model of the brightness distribution. An alter-
native, the synthesis approach, is to describe the image as the combination of a
number of elementary atoms (Elad et al. 2007). In the synthesis approach, the
regularization is achieved by imposing to use the smallest number of atoms to ex-
plain the data. As described in our presentation, this sparsity constraint may be
introduced via an �1 norm penalty and the problem solved by specific algorithms
to cope with continuous but non-smooth criteria. It is also possible to try to mimic
the effects of using an �0 norm penalty with greedy algorithms. The CLEAN al-
gorithm (Högbom 1974) mentioned in Section 8 can be seen as a precursor of the
synthesis approach where the atoms have all the same shape (they are point-like
sources) which are only allowed to have different brightnesses and positions.



É. Thiébaut: Principles of Image Reconstruction in Interferometry 185

The ADMM strategy implemented by Algorithm 2 was introduced for pedagog-
ical proposes to make a link between constrained optimization and self-calibration
methods and to exhibit some of the issues of solving the optimization part of
the image restoration problem. We have argued that the proposed strategy is
more consistent than existing self-calibration methods and more flexible than us-
ing algorithms restricted to smooth penalties. Introducing variables splitting and
ADMM strategy was also motivated by the effectiveness of a similar approach for
multi-spectral interferometric data. In this case, the reconstruction algorithm was
designed to deal with complex visibilities and exploits structured sparsity regu-
larization to favor point-like sources in the image (Thiébaut et al. 2012). To deal
with current optical interferometry data, it remains to demonstrate whether such
an approach has the ability to find a path to a good solution at a lower cost than
a stochastic global optimization method like MACIM (Ireland et al. 2008).

As mentioned along this presentation, optimization is not the only direction
of research to improve interferometric imaging. Perhaps first of all, multi-spectral
image reconstruction is now required to fully exploit the spectral resolution of the
existing interferometers. Indeed, it has been clearly demonstrated that spatio-
spectral regularization drastically improves the quality of the restored images
(Soulez et al. 2008). Hence existing algorithms must be extensively modified to
globally account for multi-variate data and not just reused to perform independent
reconstructions at given wavelengths (le Bouquin et al. 2009). In spite of its unri-
valed angular resolution, stellar interferometry is not as popular as, say adaptive
optics, in the astronomical community. This is partially due to the difficulty to
interpret the interferometric data. Making state of the art image reconstruction
algorithms available to non-specialists may be a good way to promote interfero-
metric observations. To that end, the methods must be not only robust but also
relatively easy to use. Developing unsupervised methods to automatically tune
the hyper-parameters of image reconstruction algorithms is therefore of particular
interest.
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Françoise Delplancke Markus Schöller, William C. Danchi. Astronomical Telescopes
and Instrumentation, Vol. 7013, 70131I–1, SPIE
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