
New Concepts in Imaging: Optical and Statistical Models
D. Mary, C. Theys and C. Aime (eds)
EAS Publications Series, 59 (2013) 203–212

SMOS-NEXT: A NEW CONCEPT FOR SOIL MOISTURE
RETRIEVAL FROM PASSIVE INTERFEROMETRIC

OBSERVATIONS

Y. Soldo1,2, F. Cabot1,2, B. Rougé2, Y.H. Kerr1,2, A. Al Bitar1

and E. Epaillard1

Abstract. Present soil moisture and ocean salinity maps retrieved by
remote sensing are characterized by a coarse spatial resolution. Hydro-
logical, meteorological and climatological applications would benefit
greatly from a better spatial resolution. Owing to the dimensions of
the satellite structure and to the degradation of the instrument’s radio-
metric sensitivity, such improvement cannot be achieved with classical
interferometry. Then, in order to achieve this goal an original concept
for passive interferometric measurements is described. This concept
should allow to achieve a much finer spatial resolution, which can be
further improved with the application of disaggregation methods. The
results will then allow the integration of global soil moisture maps into
hydrological models, a better management of water resources at small
scales and an improvement in spatial precision for various applications.

1 Introduction

During the last decades the need for a global estimation with high temporal reso-
lution of key environmental variables such as soil moisture and ocean salinity has
grown greatly (Robock et al. 2000; Dai et al. 2004; Roemmich et al. 2000).

Satellites represent the best mean for satisfying such need, and several instru-
ments have been launched onboard European and American satellites with the
intent of retrieving large-scale soil moisture and ocean salinity maps.

These instruments are based on different principles. They may involve ra-
diometers (Njoku et al. 2003), scatterometers (Bartalis et al. 2007), interferomet-
ric radiometers (Kerr et al. 2001), or they may rely on both passive and active
elements (LeVine et al. 2007; Entekhabi et al. 2010).
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Fig. 1. Characterization of spatial and temporal scales for hydrological models and

disaggregated remote sensed data.

Although different technologies were adopted, all these instruments are limited
by a spatial resolution of few tens of kilometers.

In order to be able to make use of these data in hydrological models, and for
many other applications, like the survey of water resources at the scale of irrigated
zones, a better spatial resolution must be achieved, typically it should be improved
by an order of magnitude.

To assure continuous monitoring of soil moisture and ocean salinity, while at-
taining an unprecedented fine spatial resolution, an original concept was proposed
in Cabot et al. (2012) and Kerr et al. (2010), which aims at achieving a spa-
tial resolution of few kilometers while maintaining roughly the same radiometric
resolution.

2 The need for high spatial resolution

The management of water resources is already, and will be even more in the future,
a critical issue (Alcamo et al. 2000; Döll et al. 2003). Properly dealing with this
issue cannot be done without a deep understanding of the processes involved in
the water cycle, which are studied using hydrological models.

Temporal and spatial scales can vary significantly from one model to the
other depending on the processes they focus on. However, by improving the spa-
tial resolution, the interaction between remotely sensed global soil moisture maps
and hydrological models will be more effective and will result in an improved
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environmental knowledge. Figure 1 shows how disaggregation of SMOS-NEXT
retrievals will result in a better cooperation with hydrological models.

Combined with weather models, remotely sensed global soil moisture maps
can help achieve more accurate forecasting predictions, as well as to assess the risk
for fires or floods on specific areas. Storms or heavy precipitations are of course
more likely to cause floods over moist soils, and winds over very dry soils will
increase the risk for fires.

Over ocean, the salt content will be retrieved. Indeed, ocean salinity’s annual
and inter-annual variations are crucial for monitoring and understanding of climate
and climate changes, as they influence ocean currents and water evaporation from
oceanic surfaces. A better resolution will improve the capability to follow in more
details how currents vary with time as well as how river plumes interact with these
oceanic currents.

Other than the nominal uses, SMOS has proved to be a versatile satellite,
as its data has been used also for applications like wind speed estimation inside
tornadoes (Grodsky et al. 2012) or the monitoring of the extent of sea ice sheets
(Kaleschke et al. 2012). Naturally all these applications will benefit from a finer
spatial resolution.

3 Operating frequency and spatial resolution

The maximum sensitivity to both soil moisture and ocean salinity is close to
the protected 1400–1427 MHz band, and atmospheric disturbances are negligi-
ble at these frequencies (Wigneron et al. 2000), thus for a passive instrument
like SMOS-NEXT, this wave band is clearly the best choice in term of operating
frequency.

Even though artificial emissions are forbidden in this band to allow passive
observations of both Earth and sky (ITU Radio Regulations 1996), after the first
SMOS’ data retrievals, the presence of contaminating unlawful sources was noticed
(Anterrieu & Khazaal 2011), so a strategy has been developed to deal with these
radio frequency interferences that should provide a cleaner signal. The detailed
description of this strategy is out of the scope of this contribution.

Once the operating frequency has been fixed, there are only two other param-
eters that define the spatial resolution (Rs)

Rs =
Hλ

d
(3.1)

H , the satellite altitude, and d, the diameter of the equivalent real aperture an-
tenna, that in our case is equal to the maximum baseline (λ is the wavelength of
the central operating frequency).

The spatial resolution could be improved by reducing the altitude of the satel-
lite. However, the choice of altitude is also driven by constraints linked to the width
of the swath and to the density of the atmosphere which determines the fuel con-
sumption, and hence the weight at launch. All similar missions are orbiting, or
are planned to orbit, at altitudes of about 700 km, so it is safe to assume that a
similar value will be chosen.
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Fig. 2. Interdependence between spatial resolution and radiometric sensitivity; SMOS’

maximal baseline is already close to the optimal trade off.

Consequently, the only way to improve the resolution is to increase the length
of the baselines.

However, longer baselines means bigger surfaces of the equivalent real aperture
antenna, and that is detrimental to the radiometric resolution (ΔT ) (Camps et al.
1998) according to:

ΔT = A
TA + Trec√

Bti

√
NV (3.2)

where A is the pixel area, TA is the antenna temperature, Trec is the receiver
temperature, B is the spectral bandwidth, ti is the integration time interval and
NV is the number of points sampled by the array in the Fourier domain.

To improve the spatial resolution by an order of magnitude means to have
baselines ten times bigger. For SMOS this would lead to three 40 m long arms,
which represents obvious feasibility difficulties. Moreover, as the spatial resolution
vary linearly with d, the radiometric resolution is proportional to the square of d,
through NV (for a Y-shaped instrument NV = 6N2

el+6Nel+1, with Nel the number
of receivers per arm); hence longer baselines would lead to a loss of radiometric
sensitivity, which is unacceptable with respect to the very stringent requirements
for oceanic observations (Berger et al. 2002).

Because of this relation between spatial resolution and radiometric sensitivity,
this classical approach can hardly lead to the improvement of one without the
degradation of the other (see Fig. 2).



Y. Soldo et al.: SMOS-NEXT 207

Fig. 3. Principle of spatio-temporal aperture synthesis: the phase differences are due to

the difference in space and time between antennas.

4 Spatio-temporal interferometry

In order to improve the spatial resolution while maintaining roughly the same
radiometric resolution, an original solution was proposed in Cabot et al. (2012)
and Kerr et al. (2010). It consists in using observations made by a set of antennas
at different times. The temporal coherence of a signal with spectral bandwidth B
is defined as:

τ =
1
B
· (4.1)

With a fine filtering it is possible to select bandwidths as small as 100 Hz, which
results in coherence time of 0,01 s. At the orbital speed, the satellite travels, within
the coherence time, a distance of 75 m, i.e. more than what it is required for a
snapshot.

In this condition it is possible for the satellite to observe at two different times,
two signals that are coherent with one another. Based on this principle, that was
studied to depth in Braun 2011, SMOS-NEXT would be a 1-D interferometric
radiometer, whose second dimension is given by the movement of the satellite on
its orbit. In other words, signal acquired by the i− th elementary antenna at the
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instant t0 would be correlated (also) to the acquisitions of the same antenna at
later times t0 + Δt (Fig. 3).

In this way the relation between spatial and radiometric resolution is less
strict and it is possible to meet the requirements for both.

In fact with the elementary antennas along the arm and the satellite’s motion,
a set of both real and virtual antennas (i.e. real antennas at later times) is created,
and while the spatial resolution is assured by the baselines in the two directions
(along the satellite’s arm and along the movement of the satellite), the radiometric
resolution is only function of the real elementary antennas along the arm.

5 Preliminary design

SMOS-NEXT requires long physical baselines. But a satellite with three 40 m
long arms disposed in a Y-shape is not a technologically realistic solution for the
time being. Nevertheless it is possible to launch and deploy on orbit a single
40–45 m long arm. This is one of the two design options considered today, the
other solution consisting in two satellites flying in formation.

Both solutions represent technical difficulties but the second one would imply
a spatial resolution that depends on the relative distance between the satellites,
which shortens at high latitudes, when the orbital planes cross. So we will consider
only the first solution here on.

From the satellite’s altitude, we can calculate its mean velocity:

Vsat =
√

μ

a
(5.1)

where μ is the standard gravitational parameter equal to 398 600 km3 s−2, and a
is the semi-major axis of the orbit. For a circular orbit and an altitude of 700 km,
Vsat is roughly equal to 7500 ms−1.

The arm will be filled with elementary antennas spaced, as for SMOS, by
0,875 wavelengths. If the maximum redundancy configuration is chosen the total
number of antennas will be roughly 250.

Sampling frequency (Fs) will be such that the spacing between real and virtual
antennas (Δsantennas) is at least equal to the spacing between real antennas,
that is:

Fs ≥
Vsat

Δsantennas
=

7500 ms−1

0, 875λ
=

7500 ms−1

0, 875 · 0, 21 m
≈ 40 kHz. (5.2)

A snapshot is then defined as the sequence of acquisitions that the satellite makes
in a time interval corresponding to a displacement of about 45 m. The time interval
required for the satellite to cover this distance (0,006 s) must be lower than the
coherence time for the chosen bandwidth (0,01 s). Each snapshot will then be
composed by 240 or more acquisitions.
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6 Cross-correlations between antennas

The expression of an electromagnetic signal for a set of virtual and real antennas
can be expressed in function of time and space as in:

S0(s, ν)
ρ(s)

= e−2jπν(t− ρ(s,t)
c ) (6.1)

where S0 is the electromagnetic signal, ν is the signal’s frequency, ρ(s, t) is the
source-antenna distance, t is the time and s indicates the source’s position.

Under the assumption that sources are spatially incoherent the cross-correlations
between the two electromagnetic fields at the antennas’ positions can be written
as

〈S0(s, ν)S∗
0 (s, ν)〉e

−2jπν(t1− ρ1(s,t1)
c )

ρ1(s)
e−2jπν(t2− ρ2(s,t2)

c )

ρ2(s)
(6.2)

where indexes 1 and 2 indicate the two antennas.
Even though the source-antenna distance varies with time due to Earth’s

oblateness and orbital ellipticity we can consider it independent from time during
a snapshot.

If we consider the case in which 1 and 2 represent the same antenna at different
times, then we have:

〈S0(s, ν)S∗
0 (s, ν)〉e

−2jπν(t1− ρ1(s,t1)
c )

ρ1(s)
e−2jπν(t1+Δt− ρ2(s,t1+Δt)

c )

ρ2(s)
(6.3)

〈S0(s, ν)S∗
0 (s, ν)〉e

−2jπν(t1− ρ1(s,t1)
c )

ρ1(s)
e−2jπν(t1− ρ2(s,t1+Δt)

c )

ρ2(s)
e2jπνΔt· (6.4)

We have then obtained the expression of the van Cittert-Zernike theorem multi-
plied by an exponential term.

In fact the term 〈S0(s, ν)S∗
0 (s, ν)〉 is simply the intensity of the electromag-

netic radiation of the source, noted TB, and by applying the far field approximation
and the quasi monochromatic approximation, the product of the phase terms can
be expressed as a function of the direction cosines (ξ,η) as follows:

e−2jπν(t1− ρ1(s,t1)
c )ρ1(s)e−2jπν(t1− ρ2(s,t1+Δt)

c )ρ2(s)
ρ1(s)ρ2(s)

� e−2jπν
(d1ξ+d2η)

c · (6.5)

Integrating over the observation area we have:

V =
∫∫

ξ2+η2<1

TB(ξ, η)√
1− ξ2 − η2

e−2jπν
(d1ξ+d2η)

c e2jπνΔtdξdη = (6.6)

= e2jπνΔt

∫∫
ξ2+η2<1

TB(ξ, η)√
1− ξ2 − η2

e−2jπν
(d1ξ+d2η)

c dξdη (6.7)
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Aside from the term e2jπνΔt, in this expression the visibility (V ), corresponding to
the cross-correlation between antennas, is expressed as the two-dimensional Fourier
transform of the so-called modified brightness temperature map of the source,
which is the brightness temperature divided by the obliquity factor

√
1− ξ2 − η2

(Camps et al. 1998).
So far we only considered the central frequency of the signal. The integration

of (6.7) on the filter’s bandwidth (B) can be written dropping the double integral
since it is independent from frequency.

ν+B/2∫
ν−B/2

e2jπνΔt = e2jπνΔtsinc(B
uξ + vη

ν
) (6.8)

where
sinc(B

uξ + vη

ν
) = r̃(ξ, η) (6.9)

is called the Fringe Washing Function. By integrating 6.8 and 6.9 in 6.7 we obtain

= e2jπνΔt

∫∫
ξ2+η2<1

TB√
1− ξ2 − η2

r̃e−2jπν
(d1ξ+d2η)

c dξdη. (6.10)

As soon as we consider real antennas, their radiation patterns (F (ξ, η)) and their
corresponding solid angles (Ω) must be taken into account. In the case under study
(same antenna, different times) the final expression is then written as follows

V = e2jπνΔt

∫∫
ξ2+η2<1

F (ξ, η)∗F (ξ, η)
Ω(ξ, η)

TB(ξ, η)√
1− ξ2 − η2

r̃e−2jπν
(d1ξ+d2η)

c dξdη (6.11)

where F ∗(ξ, η) represents the complex conjugate of F (ξ, η).

7 Detemporalization

Previously we made the choice of selecting a 100 Hz band. Even though possible,
this solution represent technical difficulties, and in order to use wider range of
the protected band several bandwidths of this amplitude would be needed, thus
multiplying the quantity of information to be downlinked to the ground stations.

A different approach is therefore proposed. It consists in using larger band-
widths and applying a temporal shift to the signal received by one of the antennas.

This approach is called detemporalization.
This is implemented by multiplying by e−2jπνΔt the phasor describing the

electromagnetic field at time t2 that appear in the precedent expression. Follow-
ing the same development, we obtain hereafter the expression for the visibility
function:

V =
1
Ω

∫∫
ξ2+η2<1

F ∗F
TB√

1− ξ2 − η2
r̃e−2jπν

(d1ξ+d2η)
c dξdη. (7.1)
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That is the fundamental relationship between visibility and brightness temperature
used for SMOS, before considering the effects of antenna radiation patterns, and
before integration with respect to the frequency.

8 Disaggregation

This information on ground will then provide brightness temperature global maps,
and using several observations the soil moisture can be retrieved. The spatial
resolution of these maps will be, using the data explicated above:

Rs =
Hλ

d
< 4 km. (8.1)

This result represents a significant improvement with respect to the data available
for the time being, but still it is not sufficient for integration with the hydrological
models. In order to do so, this data needs to be downscaled further. Disaggre-
gation methods allow downscaling of soil moisture microwave measurements, by
making use of the knowledge of the evaporative fractions over specific areas, that
are retrieved by optical, near-infrared or thermal infrared measurements (Merlin
et al. 2008).

9 Conclusions

The objective of improving the spatial resolution of soil moisture and ocean salinity
maps by an order of magnitude can be achieved with the use of a long baseline
spatio-temporal interferometer.

The detemporalization technique was then introduced to ease the technical
constraints of such instrument.

The resolution obtained is not yet sufficient for the implementation in hydro-
logical models and in future weather models, in which the spatial resolution will
be improved. Then disaggregation methods can then be used to downscale further
space borne microwave soil moisture retrievals.

Theoretical studies have been conducted to study the principle of the spatio-
temporal aperture synthesis, and experimental campaigns are going to be carried
out in the near future.
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