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INTRODUCTION TO THE RESTORATION OF
ASTROPHYSICAL IMAGES BY

MULTISCALE TRANSFORMS AND BAYESIAN METHODS

A. Bijaoui1

Abstract. The image restoration is today an important part of the as-
trophysical data analysis. The denoising and the deblurring can be
efficiently performed using multiscale transforms. The multiresolution
analysis constitutes the fundamental pillar for these transforms. The
discrete wavelet transform is introduced from the theory of the approxi-
mation by translated functions. The continuous wavelet transform car-
ries out a generalization of multiscale representations from translated
and dilated wavelets. The à trous algorithm furnishes its discrete re-
dundant transform. The image denoising is first considered without any
hypothesis on the signal distribution, on the basis of the a contrario de-
tection. Different softening functions are introduced. The introduction
of a regularization constraint may improve the results. The application
of Bayesian methods leads to an automated adaptation of the soften-
ing function to the signal distribution. The MAP principle leads to
the basis pursuit, a sparse decomposition on redundant dictionaries.
Nevertheless the posterior expectation minimizes, scale per scale, the
quadratic error. The proposed deconvolution algorithm is based on a
coupling of the wavelet denoising with an iterative inversion algorithm.
The different methods are illustrated by numerical experiments on a
simulated image similar to images of the deep sky. A white Gaussian
stationary noise was added with three levels. In the conclusion different
important connected problems are tackled.

1 Introduction

The astrophysical images observed by modern instruments are today currently
enhanced by digital processing. In particular, many efforts are done for their
denoising and their deblurring. These operations are often coupled in a global
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image restoration. Generally the problem is written as:

Y = AX + N; (1.1)

where Y, X, A and N are respectively the observed image, the image to be
restored, the blurring linear operator and the noise image.

The inversion is conditioned by two features: the matrix singularities and the
noise level. In the case of a regular blurring matrix and a signal without noise, the
inversion is unique, the problem being only to minimize the number of operations.
In general, the noise level and the matrix singularities lead to inconsistency and
instability. Statistical rules are needed to define the correct solution. A regularity
constraint is also required to select the best one from a given criterion.

In this context, the image representation plays an important part. In the
general case of a space invariant Point Spread Function (PSF), the matrix product
corresponds to a convolution in the direct space and a filtering in the Fourier
one. Thus, the matrix singularities are associated to the frequency holes. Thus, a
method based on the Fourier transform can not fill these holes without a constraint.
In the case of a representation different from a Fourier series, this filling becomes
possible. This is the case for the CLEAN algorithm (Högbom 1974) based on the
consideration that the information consists in sparse Dirac peaks.

The representation plays an important part for the denoising. Its quality de-
pends on the efficiency to concentrate the information into the minimum number
of coefficients; these coefficients being obtained by a suitable transform.

Multiscale transforms were early developed and applied for the image process-
ing (Starck et al. 1998; Mallat 1998). The Multiresolution Theory developed in
80’s is a beautiful framework to get multiscale representations (Mallat 1989). It
leads to the Discrete Wavelet Transform (DWT). Closely related redundant trans-
forms, connected to the continuous wavelet transform (CWT) (Morlet et al. 1982)
carried out better results (Raphan & Simoncelli 2008). Nevertheless a correct
CWT development needs the multiresolution theory.

The present paper constitutes an introduction to this large topic. In Section 2,
the multiresolution theory is developed in the context of the approximation theory
from translated scaling functions. In Section 3, the CWT is then described. It
is shown that the use of scaling functions unifies DWT and CWT. The denoising
is examined in Section 4 from different thresholding rules. In Section 5, a first
Bayesian approach, derived from the Maximum a Posteriori (MAP), leads to the
Basis Pursuit (BP). The Bayesian posterior mean is applied in Section 6. In
Section 7, an application to a deconvolution problem is developed. Finally, in the
conclusion, different uncovered problems are scanned.

2 The multiresolution theory and the DWT

2.1 The approximation by translated functions

The Shannon interpolation. The Shannon interpolation theorem was a milestone
in the signal processing progress (Shannon 1948). A function f(x) ∈ L2(R) is
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interpolated from regularly spaced samples thanks to the relation:

f0(x) =
+∞∑

k=−∞
f(kh)sinc

(x

h
− k

)
; (2.1)

where sinc(x) is the sine cardinal function ( sin πx
πx ) and h the sampling step. The

interpolation is perfect (f0(x) ≡ f(x)) if h ≤ h0, h0 being the Nyquist-Shannon
step:

h0 =
1

2ν0
; (2.2)

where ν0 is the cut-off frequency of the function f(x). In practice, this theorem is
not directly applied due to the slow convergence of the sine cardinal function. It
introduced the idea of interpolations based on translated functions that played a
fundamental part for the building of the multiresolution theory.
The L2 approximation by translated functions. We set now (Schoenberg 1946;
Strang & Fix 1971):

f0(x) =
+∞∑

k=−∞
a(k)ϕ(x − k). (2.3)

Compared to Equation (2.1), the sampling step is set to 1, the sine cardinal func-
tion is changed to the ϕ one, the values at the interpolation mesh f(nh) are
changed to the a(k) coefficients. The goal is not to get f0(k) ≡ f(k). Here, we
search the coefficients a(k) such that the distance between the functions f(x) and
f0(x) is minimum in the L2(R) space, i.e.:

R =
∫ +∞

−∞
|f(x)− f0(x)|2dx (2.4)

is minimum. Taking into account Equation (2.3) we get:∫ +∞

−∞
ϕ(x− k)[f(x)−

+∞∑
l=−∞

a(k)ϕ(x− l)]dx = 0. (2.5)

The following equation is derived:

c(k) =
+∞∑

l=−∞
a(l)A(k − l); (2.6)

with:

A(k − l) =
∫ +∞

−∞
ϕ(x − k)ϕ(x− l)dx; (2.7)

and

c(k) =
∫ +∞

−∞
f(x)ϕ(x − k)dx ≡< f(x), ϕ(x − k) > . (2.8)



268 New Concepts in Imaging: Optical and Statistical Models

Equation (2.6) is a discrete convolution which can be solved by the application of
the Fourier transform:

ĉ(ν) = â(ν)
+∞∑

n=−∞
Â(ν + n); (2.9)

with Â(ν) = |ϕ̂(ν)|2. The inversion is possible if:

Ŝ(ν) ≡
+∞∑

n=−∞
|ϕ̂(ν + n)|2 �= 0. (2.10)

ϕ(x) is called the scaling function. c(k) is a weighted mean of f(x) around k.
f0(x) is the projection of f(x) into a subspace V0 of L2(R).
Duality and orthogonal scaling functions. If Ŝ(ν) = 1 a(k) = c(k), the approxima-
tion is easily computed from the scalar products c(k).

If, more generally, Relation 2.10 is satisfied for all frequencies, we can derive a
new scaling function ϕ̄(x) from the Fourier transform of the initial one (Daubechies
et al. 1986):

ˆ̄ϕ(ν) =
ϕ̂(ν)√
Ŝ(ν)

. (2.11)

The set {ϕ̄(x − k)} is an orthonormal basis of the V0 subspace. Here the a(k)
coefficients are identical to the c(k) ones. The same scaling function is used for
the analysis (c(k)) and the synthesis (a(k)). This is the case for the Shannon
interpolation, the sine cardinal function being an orthogonal scaling function.

In the case of a non orthogonal scaling function, it is also convenient to intro-
duce the dual scaling function:

ˆ̃ϕ(ν) =
ϕ̂(ν)
Ŝ(ν)

. (2.12)

In this framework, it results that:

f0(x) =
+∞∑

k=−∞
c(k)ϕ̃(x − k). (2.13)

Here the c(k) coefficients are also identical to the a(k) ones. But it is not the same
scaling function used for the analysis (c(k)) and the synthesis (a(k)).
Normalization of the scaling function. In Equation (2.3) the scaling function is
considered without normalization. The orthonormal scaling functions associated
to Equation (2.11) have, by construction, their square integral equal to 1. This is
the general setting in the framework of the multiresolution theory. Nevertheless,
it could be also convenient to choose the integral equal to 1. In this case the
approximation coefficients are local means, weighted by the scaling function.
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The Shannon scaling function. It is easy to show that the shifted sine cardinal
functions with integers are orthogonal. The scaling function is here:

ϕ(x) =
sinπx

πx
· (2.14)

The corresponding V0 subspace is the one of the functions having a frequency sup-
port in [−0.5, 0, 5]. The approximation for a function belonging to V0 corresponds
to the Shannon interpolation. It can be noted that this approximation is invariant
by translation.
The Haar scaling function. The characteristic function, H(x) = 1 for x ∈ [0, 1]
and null outside this interval, is called the Haar scaling function. The functions
shifted with integers are orthogonal. The corresponding V0 subspace is the space
of the staircase functions. Note that this approximation is only invariant by an
integer shift.

2.2 The pyramid of resolution

Scale modification and the dilation equation. The scaling function is dilated by a
factor a, the approximation coefficients become:

c(a, k) =< f(x),
1
a
ϕ
(x

a
− k

)
> . (2.15)

The factor 1
a is introduced to keep constant the integral of the dilated scaling

function. In the case of an orthonormal scaling function, the factor becomes 1√
a

in order to keep the square integral equal to 1.
There is a linear relation between c(k) and c(a, k) if the scaling function satisfies

to the dilation equation (Strang 1989):

1
a
ϕ(

x

a
) =

+∞∑
n=−∞

ha(n)ϕ(x − n). (2.16)

It results that

c(a, k) =
+∞∑

n=−∞
ha(n)c(ak + n). (2.17)

In this framework, the function f(x) has to be known only by its approximation
coefficients c(k). Note that the number of coefficients (for a finite set) is reduced
by a factor a. Most often a = 2, this leads to the so-called dyadic analysis. The
resulting approximation fa(x) belongs to a subset Va which is embedded in V0.
The resolution pyramid. The dilation of the scaling function may be iterated,
leading to the approximations f0(x), fa(x), fa2(x), ... These functions constitute
the pyramid of resolution associated to this analysis. The functions belong to the
subsets V0 ⊃ Va ⊃ Va2 . . .. For a finite initial number of approximation coefficients,
their number is divided by a at each iteration step.
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Examples of scaling functions. It is easy to show that the sine cardinal function
obeys to the dilation equation, whatever the integer a. The generated subspace
corresponds to the functions with a frequency bandwidth 1, 1

a , 1
a2 , ...

The Haar scaling function obeys also to the dilation equation:

Ha(x) =
1
a
[H(x) + H(x− 1) + . . . + H(x− a + 1)]. (2.18)

The B-spline functions (Hou & Andrews 1978) generalize the Haar one. Its cen-
tered version is defined by its Fourier transform:

B̂l(ν) = sincl+1(ν). (2.19)

The Fourier transform of its dilated version is:

B̂l,a = sincl+1(aν). (2.20)

Its quotient with Bl(ν) is:

ĥl,a(ν) =
sincl+1(aν)
sincl+1(ν)

· (2.21)

It is easy to show that it is a 1-periodic function. In particular, for a = 2 we get:

ĥl = cosl+1(ν); (2.22)

which leads to:

hl(n) =
1

2l+1
C

l+1
2 −n

l+1 . (2.23)

The cubic B-spline is often used (Starck et al. 1998). Its coefficients are:

h3(n) =
1
16

C2−n
4 . (2.24)

Case of an orthonormal scaling function. From Equation (2.12) we derive:

+∞∑
n=−∞

|ϕ̂(ν + n)|2 = 1. (2.25)

That leads directly to:
+∞∑

n=−∞
|ϕ̂(2ν + n)|2 = 1. (2.26)

The dilation equation in the Fourier space is written as:

ϕ̂(2ν) = ĥ(ν)ϕ̂(ν). (2.27)
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We have:
+∞∑

n=−∞
|ϕ̂(2ν + n)|2 =

+∞∑
n=−∞

|ϕ̂(2ν + 2n)|2 +
+∞∑

n=−∞
|ϕ̂(2ν + 2n + 1)|2 = 1 (2.28)

Relation 2.27 is applied:

+∞∑
n=−∞

|ĥ(ν + n)|2|ϕ̂(ν + n)|2 +
∣∣∣∣ĥ(

ν + n +
1
2

)∣∣∣∣2 ∣∣∣∣ϕ̂(
ν + n +

1
2

)∣∣∣∣2 = 1 (2.29)

Taking Relation 2.25 and taking into account the periodicity of the function ĥ(ν)
it results finally:

|ĥ(ν)|2 +
∣∣∣∣ĥ(

ν +
1
2

)∣∣∣∣2 = 1. (2.30)

2.3 The 1D multiresolution analysis

The complementary subspace. As V1 ⊂ V0, we can write:

f0(x) = f1(x) + g1(x); (2.31)

where f0 ∈ V0 and f1 ∈ V1. g1 is a function of the complementary subspace W1 of
V1 in V0, i.e. V0 = V1 + W1.
The wavelet basis. g1(x) can be written as:

g1(x) =
∞∑

k=−∞
w(1, k)ψ̃

(x

2
− k

)
. (2.32)

The detail coefficients w(1, k) are obtained by projection on a translated set:

w(1, k) =< f,
1
2
ψ
(x

2
− k

)
> . (2.33)

The w(1, k) computation from the c(k) ones, requires that:

1
2
ψ
(x

2

)
=

∑
n

g(n)ϕ(x − n); (2.34)

i.e. that 1
2ψ(x

2 ) belongs to V0. That leads to the relation:

w(1, k) =
∑

n

g(n)c(2k + n). (2.35)

Orthogonal wavelets. In this case we have:

+∞∑
n=−∞

|ψ̂(ν + n)|2 = 1. (2.36)
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Equation (2.34) is equivalent to:

ψ̂(2ν) = ĝ(ν)ψ̂(ν). (2.37)

Thus, it is derived that:

|ĝ(ν)|2 + |ĝ
(

ν +
1
2

)
|2 = 1. (2.38)

The subspace V1 and W1 being orthogonal we have:∑
n

ϕ̂(ν + n)ψ̂∗(ν + n) = 0. (2.39)

The following relation is derived:

ĥ(ν)ĝ∗(ν) + ĥ

(
ν +

1
2

)
ĝ∗

(
ν +

1
2

)
= 0. (2.40)

Filters h and g satisfying Relations 2.30, 2.38 and 2.40 generate conjugate orthog-
onal scaling and wavelet functions. For a given filter h obeying to 2.30, we can
associate the filter g given by the relation:

ĝ(ν) = e−2iπν ĥ∗
(

ν +
1
2

)
(2.41)

h and g are called Quadrature Mirror Filters (QMF) (Esteban & Galland 1977).
Reconstruction. Any V0 basis function ϕ(x− k) can be written as a sum of V1 and
W1 base functions:

ϕ(x− k) = 2[
∑

l

h(k − 2l)ϕ1(x− 2l) + g(k − 2l)ψ1(x− 2l)]. (2.42)

That leads to get the approximation coefficients by projection:

c(k) = 2[
∑

l

h(k − 2l)c(1, l) + g(k − 2l)w(1, l)]. (2.43)

The multiresolution analysis. From the approximation coefficients c(1, k), it is
possible to iterate by a new dilation of the scaling and of the wavelet functions.
By iteration we obtained a set of details w(i, k) such that the function f(x) can
be written as:

f(x) =
∞∑

i,k=−∞
w(i, k)ψ̃

( x

2i
− k

)
(2.44)

for any function of the L2(R) space (Mallat 1989).
The recurrence formulae and the filter bank. The previous developments are sum-
marized as:
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Approximation c(i, k) =
∑

n h(n)c(i− 1, 2k + n);

Wavelets w(i, k) =
∑

n g(n)c(i− 1, 2k + n);

Reconstruction c(i, k) = 2[
∑

l h̃(k + 2l)c(i + 1, l) + g̃(k + 2l)c(i + 1, l)].]

In the case of orthogonal scaling and wavelet functions, h̃(n) = h(−n) and g̃(n) =
g(−n). The resulting algorithm flow-chart is drawn in Figure 1. This algorithm
is known as the filter bank one (Vitterli 1986). The data vector inputs at the top
left. It is convolved with the two filters H (low passband) and G (high passband).
The resulting vectors are decimated, by removing every other point. The smoothed
values are convolved again, and so on, up to get one value. The restoration consists
to introduce a 0 between two approximation or two detail coefficients. We start
from the bottom right, and progressively the signal is restored from the largest
scale to the smallest one. The convolutions are done with the filter H̃ and G̃.

H HH

2

G G G GGG

2 2 2

22 2

2 2 2

2

H
~

G
~

G
~

G
~

H
~

H
~

2

H
~

22

G
~

++ + +2

Fig. 1. Flow-chart of the filter bank algorithm.

The algorithm was developed from the multiresolution theory. But it is more
general. The restoration is perfect only if the filters h, h̃, g and g̃ satisfied the
following conditions called perfect reconstruction and antialiasing conditions:

ĥ(ν)ˆ̃h(ν) + ĝ(ν)ˆ̃g(ν) = 1; (2.45)

ĥ(ν)ˆ̃g(ν) + ĥ

(
ν +

1
2

)
ˆ̃g
(

ν +
1
2

)
= 0. (2.46)

The Daubechies wavelets. The Haar transform is associated to the filters:

h(0) = h(1) =
1√
2

h(n) = 0 n �= (0, 1). (2.47)
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The corresponding high pass filter is

g(0) =
1√
2

g(1) = − 1√
2

h(n) = 0 n �= (0, 1). (2.48)

The algorithm is very fast. K operations are required for the transform and its
inverse for a signal with K elements.

Daubechies (1988) generalized the Haar transform with compact filters. They
are widely applied in modern signal processing. Later on in this paper, Daubechies’
filters of length 8 are applied.

2.4 The 2D multiresolution

The 2D approximation by translated scaling functions. The concept of approxima-
tion by translated scaling functions in L2(R) is easily extended to 2 (and more)
dimensions. If f(x, y) is the function to be approximated and ϕ(x, y) the scaling
function, the approximation coefficients are:

c(0, k, l) =< f(x, y), ϕ(x − k, y − l) > . (2.49)

The corresponding approximation is:

f0(x, y) =
∑
k,l

c(0, k, l)ϕ̃(x− k, y − l) (2.50)

where ϕ̃(x, y) is the dual scaling function. This function exists if:∑
n,m

|ϕ̂(u + n, v + m)|2 �= 0. (2.51)

The approximation is a f(x, y) projection on the V0 subspace of L2(R2).
The 2D dilation equation. The approximation for a scaling function dilated by a
factor a in each direction can be computed from the c(0, k, l) coefficients if:

1
a2

ϕ(
x

a
,
y

a
) =

∑
n,m

h(n, m)ϕ(x− n, y −m). (2.52)

Most often the variables are separated:

ϕ(x, y) ≡ ϕ(x)ϕ(y) (2.53)

where ϕ(x) satisfies the 1D dilation equation.
The wavelets. Taking into account the variable separation the V0 subspace is
divided in four subspaces:

V1 the subspace corresponding to the approximation at scale 2. It is computed
with the filter h(n)h(m). The scaling function is 1

4ϕ(x
2 )ϕ(y

2 ).
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W1,h associated to the horizontal details. The wavelet coefficients are computed
with the filter g(n)h(m). The wavelet function is 1

4ψ(x
2 )ϕ(y

2 ).

W1,v associated to the vertical details. The wavelet coefficients are computed with
the filter h(n)g(m). The wavelet function is 1

4ϕ(x
2 )ψ(y

2 ).

W1,d associated to the diagonal details. The wavelet coefficients are computed
with the filter g(n)g(m). The wavelet function is 1

4ψ(x
2 )ψ(y

2 ).

In this framework, the 2D filter bank algorithm is easily deduced from the 1D one.

3 The continuous wavelet transform

3.1 Generalities

Definition and main properties. The Morlet-Grossmann definition of the continu-
ous wavelet transform (Grossmann & Morlet 1984) for a 1D signal f(x) ∈ L2(R)
is:

W (a, b) = N(a)
∫ +∞

−∞
f(x)ψ∗

(
x− b

a

)
dx; (3.1)

where z∗ notes the complex conjugate of z, ψ∗(x) is the analyzing wavelet, a (> 0)
is the scale parameter and b is the position parameter. Grossmann & Morlet set
N(a) = 1√

a
, but it is often convenient to set N(a) = 1

a . The transformation is
linear, covariant under translations and under dilations. The last property makes
the wavelet transform very suitable for analyzing hierarchical structures. It is like a
mathematical microscope with properties that do not depend on the magnification.
Inversion. Consider now a function W (a, b) which is the wavelet transform of a
given function f(x). f(x) can be restored by using the formula (Grossmann &
Morlet 1984):

f(x) =
1

Cψ

∫ +∞

0

∫ +∞

−∞

1√
a
W (a, b)ψ

(
x− b

a

)
da.db

a2
; (3.2)

where:

Cψ =
∫ +∞

0

|ψ̂(ν)|2
ν

dν. (3.3)

The reconstruction is only available if Cψ is defined (admissibility condition). This
condition is generally true if ψ̂(0) = 0, i.e. the mean of the wavelet function is 0.

3.2 The discrete wavelet transform

The transform sampling. The image sampling is generally made according to the
Shannon theorem. The discrete wavelet transform (DWT) can be derived from
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this theorem. If the wavelet function has no cut-off frequency, the transform cut-
off frequency is the signal one, whatever the scale. So if K is the number of signal
elements and I the number of scales the transform has KI elements.

In the case of a wavelet function having the cut-off frequency 1
2 , at each dyadic

scale the cut-off frequency is divided by two. Thus, the sampling step can be
multiplied by a factor 2. The total transform length becomes about 2K.

Generally the scales are sampled according to a 2i law. Nevertheless it is not
guaranteed that all the information on the CWT is kept by this sampling.
Direct transformations. The DWT can be obtained directly by convolution, using
a compact wavelet function. As the scale increases, the CPU time increases in
proportion. So, in practice this method is not easy to use.

It is possible to work in the Fourier space, computing the transform scale by
scale. The number of elements for a scale can be reduced for a wavelet having a
cut-off frequency. Here, the CPU time is proportional to K log(K).
The transform from the filter bank. In fact, in the previous section, beyond the
multiresolution theory, we examined a fast DWT algorithm based on the filter
bank. The transform size is K and the computing time is proportional to K.

3.3 The wavelet approximation and the à trous algorithm

The sampled wavelet function at scale 1. Let us consider a real wavelet func-
tion which can be written as an approximation from translated scaling functions
(Eq. (2.34)). Let us admit that we know the sampled approximation coefficients
c(0, k) =< f(x), ϕ(x − k) >. The sampled continuous wavelet function at scale
a = 2 can written as (N(a) = 1/a):

w(1, k) =
∑

n

g(n)c(0, k + n). (3.4)

This expression is similar to 2.3, but the array is not decimated, the factor 2 being
not present. Note that in the following, the scale of the wavelet transform will
design the exponent i of the true scale a = 2i.
The recurrence expressions. We want to compute w(2, k) using a similar formula.
The scaling function ϕ(x) is chosen to satisfy the dilation Equation (2.16). In this
framework, we have for the approximation coefficients:

c(i + 1, k) = < f(x),
1

2i+1
ϕ
( x

2i+1
− k

)
> = < f(x),

1
2i

∑
n

h(n)ϕ
( x

2i
− k

)
>;

(3.5)
which leads to:

c(i + 1, k) =
∑

n

h(n)c(i, k + 2in). (3.6)

Similarly we get:
w(i + 1, k) =

∑
n

g(n)c(i, k + 2in). (3.7)
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The interpolation and the wavelet coefficients are computed with a linear operation
similar to a convolution but we jump a set of 2i − 1 points. For that reason, this
algorithm is called the à trous algorithm (algorithm with holes) (Holschneider
et al. 1989). The flow-chart of this algorithm is drawn in Figure 2. A set of
K log2 K values of the wavelet transform is obtained, with a number of operations
proportional to K log2 K.

Fig. 2. Flow-chart of the à trous algorithm.

The inversion. Here, the transform is undecimated. Thus we get a transform size
larger than the input signal one. The inverse system is over-determined. If the
{w(i, k)} set is a wavelet transform, it is easy to restore the approximation scale
by scale using dual filters h̃ and g̃ which have to satisfy the relation:

ĥ(ν)ˆ̃h(ν) + ĝ(ν)ˆ̃g(ν) = 1. (3.8)

The filters choice is large. A simple algorithm consists in making the difference
between two approximations (Bijaoui et al. 1994):

w(i + 1, k) = c(i, k)− c(i + 1, k). (3.9)

Here the inversion is obvious.
The inversion of a modified wavelet transform. If the {w(i, k)} set is not the
wavelet transform of a given signal, nevertheless a signal {c(0, k)} will be obtained
by inversion. But its wavelet transform {ws(i, k)} can be different from {w(i, k)}.
This point is important for image restoration. In this framework most often a
softening rule is applied on the wavelet coefficients. There is a duality between
the wavelet transform and the signal for the orthogonal DWT. But this duality
vanishes for the redundant undecimated wavelet transform (UDWT) associated
to the à trous algorithm. Some cautions have to be taken for the inversion. A
classical solving method consists to obtain the orthogonal projection of {w(i, k)} in
the space generated by the wavelet transforms of all the signals. That corresponds
to get the set {c(0, k)} such that its wavelet transform {ws(i, k)} has the minimum
distance to the input set {w(i, k)}. Obviously the inversion algorithm is slowed.
The shift-invariant wavelet transform. Coifman & Donoho (1995) introduced a
variant of the à trous algorithm based on the orthogonal wavelet transform. The
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transform becomes shift invariant by removing the decimation of the coefficients
(approximation and wavelet). The inversion is done by taking into account the
coefficient interleaving generated by the lack of decimation. A same pixel is thus
many times reconstructed, the mean is done in the proposed algorithm. This
algorithm has the advantage to inverse from the filter bank.
The pyramidal transform. The undecimated wavelet transform may correspond
to a too important data array for large images. At each step of the algorithm
the approximation coefficients can be removed without decimating the wavelet
array. We get a pyramidal set of values. The number of data is now 2N and the
number of operations is proportional to N . The inversion is based on an orthogonal
projection, obtained by an iterative algorithm.

3.4 The two-dimensional continuous wavelet transform

General definition. The wavelet dilation is not necessarily isotropic, i.e. identical
whatever the direction. But it can be seen as a dilation in two orthogonal direc-
tions. The reference frame can be also rotated with a θ angle. That leads to the
coordinate transform:

R(x, y, ax, ay, θ) =

(
1

ax
0

0 1
ay

)(
cos θ − sin θ
sin θ cos θ

)(
x
y

)
. (3.10)

The wavelet transform becomes:

w(bx, by, ax, ay, θ) = N(ab) < f(x, y), ψ∗(|R(x− bx, y − by, ax, ay, θ)|) >; (3.11)

where |R| designs the module of the vector R. The resulting transform is thus a
5D function. Its sampling rules are not evident, especially for the angular variable.
The isotropic 2D CWT. Most often the 2D CWT is applied in its simplified
isotropic version:

w(bx, by, a) = N(a2) < f(x, y), ψ∗
(x

a
,
y

a

)
> . (3.12)

The two dimensional à trous algorithm. The à trous and the pyramidal algorithms
can be easily transposed in two dimensions taking into account the use of a scaling
function which satisfies to the 2D dilation equation. The algorithms are simplified
in the case of a variable separation (ϕ(x, y) ≡ ϕ(x)ϕ(y)). The à trous computation
of the approximation coefficients is obtained with the expression:

c(i + 1, k, l) =
∑
n,m

h(n)h(m)c(i, k + 2in, l + 2im); (3.13)

while the wavelet coefficients are computed with:

w(i + 1, k, l) =
∑
n,m

g(n, m)c(i, k + 2in, l + 2im). (3.14)
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The wavelet function is not necessarily separated in the two directions. For exam-
ple, the wavelet associated to the difference between two successive approximations
is not separable.

Quasi isotropic scaling functions. For the coherence of the method it would be
convenient to process the data with an isotropic scaling function. The Gaussian
is the single function which is separable and isotropic. But this function does not
satisfy the dilation equation.

The centered B-splines tends for an increasing index to the Gaussian. Thus,
its use allows a quasi isotropic analysis with fast computations, for the à trous and
for the pyramidal algorithms.

4 Image denoising from significant coefficients

4.1 The significant coefficients

The quality criterion. Let us consider a discrete noisy signal Y = X+N. X is the
true signal vector and N its associated noise. The signal denoising consists into
the operation O(Y) → X̄ such that this vector is the closest to X. The distance
criterion depends on the noise statistics. The case of a stationary white Gaussian
noise is only examined in the present paper. Some methods adapted to other
noise statistics are indicated in the conclusion. For this statistical distribution,
the Euclidian distance is the universal criterion. It is converted into the Signal to
Noise Ratio (SNR) defined as:

SNR = 10 log10

|X̄−X|2
|X|2 · (4.1)

The distribution of the transform coefficients. Let us admit that an orthonormal

transform is applied on Y. That corresponds to apply a rotation in the signal
space. Thus, the noise is still Gaussian, stationary and white. This operation
seems to be useless. But the transform can deeply modify the signal statistics. For
example, let us consider a signal which is spatially quite uniformly distributed.
Even if the pixel distribution law seems to do not depend on the position, its
Fourier transform at the lowest frequencies correspond generally to the highest
coefficient values; while the values at the highest frequencies can appear very faint
compared to the noise deviation. The Wiener denoising (Wiener 1949) is a filtering
based on the ratio between the signal and the noise at each frequency. This filter
takes thus into account the information content.

This separation between the low and the high frequencies comes at the cost
of a space delocalization. At the contrary of the Fourier transform, the DWT
allows both a space and a frequency (scale) representation. Even if there is no
global information detected at small scales, few coefficients could be significant. A
wavelet denoising would restore this information while the Fourier filtering would
remove it.
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The best transform for the denoising is the one which optimizes the separation
between the signal and the noise. That depends on the considered images; but
many experiments showed that the DWT is well-adapted for the astronomical
images.
Mean coefficient property. Let us consider a DWT coefficient, it can be written
as:

w(i, k, l) =
∑
n,m

gi(n, m)c(k + n, l + m); (4.2)

where {c(k, l)} is the discrete signal and gi(n, m) is the discrete wavelet filter at
scale i. The filter is a pass-band one, thus we have:∑

n

gi(n, m) = 0. (4.3)

By consequence the mean DWT coefficient is also equal to 0 whatever the image
background. The distribution of the wavelet coefficients is centered at each scale.

Now, if the signal is constant on the support of the filter (admitted to be
compact), the wavelet coefficient is null. Due to the noise, the distribution of the
observed coefficients would be a centered Gaussian with a deviation equal to the
noise deviation σ for an orthonormal transform.
Significant coefficients. Let us consider a coefficient w(i, k, l). If its value is posi-
tive, we consider the probability p = Prob[W > w(i, k, l)], where W is the stochas-
tic variable associated to the noise distribution of the wavelet coefficient. p < ε
means that the probability of getting the value from a constant signal is fainter
that the significance level ε. That leads to introduce a threshold T (ε) such that:

Prob(w(i, k) > T ) < ε or Prob(w(i, k) < −T ) < ε. (4.4)

For a Gaussian distribution, the significance ε is translated into a factor of the
noise deviation (T = κσ). Note that, if the image has 1000 × 1000 pixels and
ε = 0.001, statistically 1000 positive coefficients (false alarms) appear significant
for a noisy uniform image. 1000 negative coefficients also appear significant. The
false alarm rate is identical to the significance threshold. Here this threshold is
equal to 3.09σ, σ being the standard deviation of the Gaussian noise distribution.

4.2 Denoising from thresholdings

The material for the experiments. The restoration tests were done on a simulated
image (Mel1) composed as a sum of 2D Gaussian functions. Their amplitudes are
distributed according to a power law, in order to get an image like astronomical
ones. A white Gaussian noise at the levels 0.007, 0.07 and 0.7 was added. In
Figure 3 the simulated 256×256 images are displayed. Their SNRs are respectively
14.73, −5.27 and −25.27 dB.
Hard thresholding (HT). The basic method consists into the image reconstruc-
tion from only the significant coefficients, according to the threshold T (Starck &
Bijaoui 1994).
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Fig. 3. The simulated images used for the tests by lexicographic order: reference and

noisy images with increasing noise level b1, b2 and b3.

Soft thresholding (ST). The images restored with the previous method display some
punctual defaults due to the discontinuities introduced by the hard thresholding.
Donoho (1995) proposed to soften them with the following rules

w(i, k, l) > T w̃(i, k, l) = w(i, k, l)− T ; (4.5)
w(i, k, l) < −T w̃(i, k, l) = w(i, k, l) + T ; (4.6)
|w(i, k, l)| < T w̃(i, k, l) = 0. (4.7)

Modified soft thresholding (MST). In previous rules the coefficients are modified
even if they are largely significant. In a modified softening we proposed rules with
two thresholds to keep them (Bijaoui et al. 1997).

|w(i, k, l)| ≥ T2 w̃(i, k, l) = w(i, k, l); (4.8)
|w(i, k, l)| ≤ T1 w̃(i, k, l) = 0; (4.9)

T1 < |w(i, k, l)| < T2 w̃(i, k, l) = w(i, k, l)
|w(i, k, l)| − T1

T2 − T1
· (4.10)

The thresholds. The denoising depends on the chosen κ parameter. In the pre-
sented experiments, we set different values, often the same for the whole scales.
In the two thresholds case, we set κ1 = 3.5 and κ2 = 4.5. The corresponding false
alarm rates are respectively 4.710−4 and 6.7.10−6, taking into account the two
signs.

Donoho & Johnstone (1994) introduced a thresholding rule (DST) based on the
minimum risk leading to a threshold depending on the number K of independent
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wavelet coefficients (which is the case for an orthogonal DWT):

κ =
√

2 log2(K). (4.11)

As K decreases with the scale by a factor 4 in 2D, the threshold decreases with
it. A similar rule was also applied to the à trous algorithm with MST (SMST).
The experiments. In Figure 4 The Haar transform of the Mel1 and the b1 images
are plotted. That shows the effect of the noise with the scales. At right of the
figure, the denoised b1 image seems quite good. A faint block effect can be identi-
fied on this image. On Figure 5 the denoised images obtained for b2 (left) and b3
(right) are displayed. The best images were selected on the different thresholding
methods. The block effect largely increases with the noise. This is due to the fact
that the noise increasing more and more coefficients become insignificant. The im-
ages are thus reconstructed by less and less coefficients, displaying the staircases
associated to the Haar scaling function.

Fig. 4. The Haar transform of the Mel1 and b1 images. At right, the denoised image

with the Haar transform and a hard thresholding at 3σ.

In Figure 6 the best denoised images obtained for b1 (left), b2 (middle) and b3
(right) with the Dauchechies 8 transform are displayed. There is no block effect,
but a ringing appears around the bright objets. Due the reduction of the number
of coefficients, these objects are characterized by peaks in the wavelet transform.
Their reconstruction corresponds to the wavy wavelet pattern.

In Figure 7 the wavelet transform obtained with the à trous algorithm on b1 is
displayed on 6 scales. The noise is clearly identified at the first scale. In Figure 8
the best denoised images obtained for b1 (left), b2 (middle) and b3 (right) with
the à trous algorithm are displayed. There is no block effect, neither ringing. Some
faint holes appeared around bright objects.

In Table 1 the SNRs obtained from different experiments are given. We can
note that the denoisings obtained from the Haar transform are generally the worst
ones. The effect of the thresholdings depends on the transform, the threshold
and the initial SNR. The application of the redundant à trous algorithm seems
to improve the denoising; but for a low SNR the Dauchechies 8 transform carries
out the best result. Thus, the analysis shows that the choice of the best method
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Fig. 5. The best denoised images for b2 and b3 with the Haar transform.

b1 D8 Hard 4 b2 D8 Hard 4 b3 D8 Soft 4

Fig. 6. The best denoised images with the Daubechies 8 transform.

Table 1. SNR obtained on the three different images with different algorithms.

Method b1 b2 b3
Haar HT κ = 3 19.49 6.06 −11.18
Haar HT κ = 4 18.77 7.82 −0.60
Haar ST κ = 3 17.25 7.06 0.37
Haar ST κ = 4 15.89 5.94 1.09

Daubechies 8 HT κ = 3 24.26 7.12 −10.78
Daubechies 8 HT κ = 4 24.46 9.33 −0.19
Daubechies 8 ST κ = 3 21.28 8.03 0.52
Daubechies 8 ST κ = 4 19.72 6.69 1.23

AT MST 26.46 12.25 −0.53
AT SMST 28.22 13.83 −2.96

depends on the input SNR. The adaptation needs to implement a thresholding
algorithm taking into account the prior signal distribution, i.e. an algorithm
based on a Bayesian statistics.
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Fig. 7. The à trous wavelet transform of the b1 image.

Fig. 8. The best denoised images with the à trous algorithm.

4.3 The regularization and the thresholding

Relation between close coefficients. In the previous methods the denoising was
based on a local approach, the pixels were thresholded independently of each
other. The environment played a role only in the computation of the wavelet co-
efficient. There are different ways to exploit the correlation between close wavelet
coefficients. Here, a simple method based on the regularization is presented.
Values of non significant coefficients. In the HT case the wavelet coefficients
are separated in two classes according to their values compared to the threshold.
The raw reconstruction consists into the application of the inverse transform with
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setting 0 for the non significant coefficients. Some artifacts, like block effects for
the Haar transform, appeared in the restoration. In reality, the true value of a
non significant coefficient is not null but faint.

Instead of inversing with null values we search to get a function f(k, l) which
minimizes a given objective function C(f). The problem can be written as: de-
termine f(k, l) such that C(f) is minimum and wf (i, k, l) = w(i, k, l) for each
significant coefficient.
The application of the Tikhonov objective criterion. We set (Bobichon & Bijaoui
1997):

C(f) ≡ |Dk(f)|2 + |Dl(f)|2; (4.12)

where Dk(f) and Dl(f) are respectively the derivatives on the k and l directions.
The C(f) minimization is equivalent to:

L(f) = 0 (4.13)

where L is the image Laplacian. The Van-Cittert algorithm (see Sect. 7.2) leads
to an iterated solution:

f (n+1) = f (n) + α[0− L(f (n))] = f (n) − αL(f (n)). (4.14)

where α is an adapted factor. For significant wavelet coefficients, we set:

wf(n+1)(i, k, l) = w(i, k, l). (4.15)

This operation allows the reduction of the block effects for the Haar transform.
The restoration is also improved for the other DWT. Few iterations are generally
needed.
Case of a softening function. Here, the wavelet coefficients are softened by a
relation:

w̃(i, k, l) = �w(i, k, l) with � = S(w(i, k, l)). (4.16)

Here S(w) is called the softening function. It takes values in the interval [0, 1].
The application of the regularization can be done by considering � as a weight.
So after applying 4.14, we set (Jammal & Bijaoui 2004):

w̃fn+1(i, k, l) = �w(i, k, l) + (1 −�))wfn+1(i, k, l). (4.17)

For the highly significant coefficients, � � 1, no modification is done. While,
for non significant ones � � 0, the algorithm furnishes the values given from the
regularization.
The experiments. In Figure 9 the best denoised images obtained for b1 (left),
b2 (middle) and b3 (right) with the à trous algorithm with regularization are
displayed. There is no block effect, neither ringing. Some faint holes appeared
around bright objects.

In Table 2 the results obtained with the application of the regularization, with
the à trous algorithm are given. 10 iterations were applied. The regularization
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Fig. 9. The best denoised images with the à trous algorithm and Tikhonov regularization

of the image.

Table 2. The SNRs obtained after regularization with the Tikhonov constraint.

Method b1 b2 b3
AT-HT 28.29 11.67 −5.48
AT-ST 27.27 10.85 −7.70

AT-DST 24.67 12.55 1.2

allowed a gain in the SNR for the hard thresholding at high SNR level. The gain
is less clear at low SNR.

The method was applied to a deconvolution in order to examine the possibility
to restore images compressed with the Haar transform (Bobichon & Bijaoui 1997;
Jammal & Bijaoui 2004; Dollet et al. 2004).

5 Image denoising from the maximum a posteriori

5.1 The Bayesian estimations

The posed problem. Let us consider a statistical variable x. It is observed with a
noise having a dispersion law q(y|x). The denoising needs to answer the question
of what we can say about x knowing y. In the previous sections, only significant
coefficients were kept, possibly after a softening. The signal distribution was not
taken into account. It was noted that the method carrying out best results depends
on the signal-to-noise ratio. Thus, it is necessary to take into account the prior
distribution px(x). That leads to apply the Bayes rule to get the conditional
posterior PDF:

px|y =
px(x)q(y|x)

py(y)
; with py(y) =

∫ +∞

−∞
px(x)q(y|x)dx. (5.1)

From the observation y, knowing the dispersion and the x prior PDF, we get
the x posterior PDF. As it is irrelevant to furnish this law for each observed value,
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a simple estimate is derived. The maximum of the posterior PDF (MAP) is the
most often furnished estimate.
The MAP and the regularization theory. The MAP estimate can be written as:

x̂ = Arg minx[− log(q(y|x)) − log(px(x))]. (5.2)

This expression is similar to the one introduced in the regularization theory. The
first term corresponds to the data attachment J2(y, x); the second one to the objec-
tive function J1(x) = − log(px(x)). In the general case of the regularization theory,
the objective function can be formalized independently of a prior distribution.
The case of a Gaussian white noise. From Equation (5.2) we get directly:

x̂ = y + σ2 ∂ log(px(x̂))
∂x

; (5.3)

where σ is the standard deviation of the Gaussian noise distribution. Thus, x̂ is
obtained by solving an equation which may have many roots. That depends on
the prior signal law. This law could be determined from the observed y PDF, by
solving a deconvolution equation. This operation is delicate due to the histogram
fluctuations.
The generalized Gaussian function and the Lq regularization. Experiments on
natural images have been carried to model the out PDFs of their wavelet coeffi-
cients with extended tails. The prior PDFs were fitted with generalized Gaussian
(Moulin & Liu 1998):

px(x) = ae−
|x|q

b . (5.4)

Coupled to Equation (5.2) that leads to the relation:

x̂ = Arg minx

[
(y − x)2

2σ2
+ λ|x|q

]
. (5.5)

In this relation λ = 1/b In the Gaussian case (q = 2), with a signal with a variance
s, we get the Wiener filter (Wiener 1949):

x̂ =
s2

s2 + σ2
y. (5.6)

In the case of a Laplacian distribution (q = 1) of parameter b, the solution is the
soft thresholding with the threshold σ2

b . For a lower exponent, the filter tends to
become a hard thresholding.

5.2 The basis pursuit

Principles. Chen et al. (1998) posed the restoration problem as:

Y = AΨZ + N (5.7)
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where Ψ is a set (dictionary) of atoms and Z the related coefficients allowing the
restoration of the image X = ΨZ. In this section, only the case A = I is examined.
An image atom is a given function, generally, but not necessarily, with a null mean.
It can be obtained by translation and dilation of a generative function, like for the
wavelet transform. A dictionary may be the union of primary dictionaries. A
dictionary can be redundant, in which case the Gram matrix computed with these
atoms is singular. In this case, a selection has to be done in order to restore the
image with few atoms. There are many atom combinations leading to restore the
same signal. The basis pursuit consists into the application of the MAP principle.
That leads to search the atoms such that:

|Y −ΨZ|2 + λ|Z|q (5.8)

is minimum. q = 0 corresponds to minimize the number of atoms (�0). Chen
et al. (1998) proposed q = 1 which furnishes also a sparse representation. λ is the
Lagrangian parameter. Its value results from the respect of the data attachment
constraint.
The matching pursuit algorithm. In the �0 case, Equation (5.8) can be approxi-
matively solved through a matching pursuit algorithm (Mallat & Zhang 1993). It
is a greedy algorithm which progressively identifies the different atoms. Whatever
the algorithm used to solved 5.8, generally it can not be proved that the minimum
number of components is reached. Nevertheless, the matching pursuit algorithms,
and specifically the orthogonal matching pursuit (OMP) (Pati et al. 1993) algo-
rithms are very popular (Tropp 2004).
The �1 case. Let us consider the case of an orthogonal wavelet dictionary.
Equation (5.8) leads to:

ΨT Y − (ΨT Ψ)−1Z− λsign(Z) = 0. (5.9)

ΨT Y is the image wavelet transform W. ΨT Ψ is the identity matrix. Thus we
write:

Z = W− λsign(Z). (5.10)

The algorithm corresponds to a soft thresholding; λ being chosen to satisfy the
data attachment condition.

In the case of redundant dictionaries, the basis pursuit algorithm allows the
minimization with a sparse representation. Different optimization algorithms were
proposed. In particular the Block-Coordinate Relaxation (BCR) method (Bruce
et al. 1998) leads to fast computations (Starck et al. 2004).
The Morphological Component Analysis (MCA). (Starck et al. 2004) This method
was developed from the use of different transforms, such as the wavelet, the ridgelet
(Candès 1998), the curvelet (Candès & Donoho 1999) and DCT (Ahmed et al.
1974) ones. BCR (Bruce et al. 1998) was used for obtaining the optimal represen-
tation. MCA was developed both with the �0 and the �1 norms.
The matching pursuit with the à trous algorithm. Instead of using dictionaries of
orthonormal bases, it is possible to develop a sparse representation from the à
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trous or the pyramidal algorithms (Bijaoui 2008). The corresponding atoms are
progressively identified taking into account a threshold which decreases at each
iteration. It is not guaranteed that the minimum number of atoms is reached with
this greedy algorithm.

In Figure 10 the denoised images obtained for b1 (left), b2 (middle) and b3
(right) with this algorithm are displayed. The atoms are identified with the à
trous wavelet transform using a matching pursuit algorithm A hard thresholding
is performed with a threshold equal to 4. Thanks to the representation, the images
appear very clean, without noise. Nevertheless the SNRs are not the best ones,
26.17 for b1, 12.07 for b2 and −1.09 for b3. The number of pyrels are respectively
702, 149 and 25. Compared to the number of pixels (65736) that corresponds to
a high compression factor (94, 441 and 2629).

Fig. 10. The images resulting from the matching pursuit algorithm.

6 Image denoising from the posterior mean

6.1 The posterior mean

The minimum mean square estimator. MAP takes into account only the posterior
distribution around its maximum which does not characterize the whole distri-
bution. The expectation minimizes the mean square error (MMSE). Its value is:

x̂ =
∫ +∞

−∞
x

px(x)q(y|x)dx∫ +∞
−∞ px(x)q(y|x)dx

· (6.1)

The MMSE evaluation. From Equation (6.1) we note that the evaluation of x̂
needs to know the dispersion law q(y|x) and the prior one px(x). In this paper, it
is admitted that the noise is white and Gaussian. As for the MAP estimation we
have to evaluate the prior distribution.

Since Robbins’ seminal work (Robbins 1956), it is known that the MMSE can
be determined directly from the observed posterior distribution py(y) for different
dispersion PDFs. This is the case for the Gaussian one.
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The Miyasawa relation. Taking into account that:

q(y|x) =
1√
2πσ

e−
(y−x)2

2σ2 ; (6.2)

we get:

x̂ = y +
1√
2πσ

∫ +∞
−∞ (x− y)px(x)e−

(y−x)2

2σ2 dx

py(y)
· (6.3)

As:
∂py(y)

∂y
=

1
σ2

∫ +∞

−∞
(x− y)px(x)q(y|x)dx; (6.4)

we get the Miyasawa relation (Miyasawa 1961):

x̂ = y + σ2 ∂ log py(y)
∂y

· (6.5)

Note that the estimate depends only on the distribution of the observed variable
y. We can also note the similarity between the Equations (5.3) and (6.5). But in
the first case (MAP) the estimate is the solution of an equation which requires the
knowledge of the prior PDF, while for the MMSE the estimate is directly furnished
by a relation which takes into account the PDF of the observed variable.

6.2 Application of the Miyasawa relation

Application to the denoising with the DWT. Here, it is set that the variable y is the
wavelet coefficient at a given scale. Thus, each wavelet plane is analyzed separately.
It exists some correlation between the coefficients at the different scales, even for
an orthogonal DWT. Thus, even if the MMSE is obtained at each scale, that does
not guarantee that it is globally reached.
The estimation of the coefficients distribution. Relation 6.5 appears at the first
glance very easy to exploit. However, the estimate depends on the derivative of
the logarithm of the PDF, which is hard to correctly estimate. It is posed that the
image is the realization of a stationary process. Thus, the coefficient histogram is
the empirical p(y) statistics. Its noise results from a Bernoulli distribution. That
leads to very bad estimations for the distribution tails. Different approaches were
proposed to improve the estimation (Bijaoui 2006, 2009):

• The Parzen method based on a sum of shifted windows (Parzen 1962). This
method gives bad estimation for the tails. The window size has to be adapted
to the event frequency.

• A denoising based on the wavelet transform (Bijaoui 2006). The Bernoulli
noise increases the difficulty.

• A PDF model based on truncated distributions. Raphan & Simoncelli (2007)
proposed exponentials. The use of Gaussians leads to easier computations
(Bijaoui 2009).
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• In the case of astronomical images, the PDF of the observed wavelet coef-
ficients may be fitted by a Voigt function (Garćıa 2006), a convolution of a
Gaussian with a Lorentzian function (Laplace PDF).

• The PDF can be approximated by a sum of Gaussians (Bijaoui 2002). The
EM algorithm can be applied to determine the parameters (Bijaoui 2011).
A simple mixture model furnishes a nice approximation to compute the soft-
ening filter (Bijaoui 2002).

A simple model for a MMSE estimation. First experiments showed on astronomi-
cal images that two Gaussian functions were extracted from the histogram of the
wavelet transform at small scales: i/the Gaussian corresponding to the noise, ii/ a
second one larger which corresponds to the sum of a signal with the noise. Thus,
the PDF can be written as:

p(y) = (1− a)G(y, N) + aG(y, S + N); (6.6)

where G(y, V ) is a centered Gaussian with a variance V .
The noise variance N is supposed to be known. Only a and S have to be

determined at each scale. These parameters can be estimated from the variance
M2 and the 4th-order moment M4:

M2 = (1 − a)N + a(S + N); (6.7)
M4 = 3(1− a)N2 + 3a(S + N)2. (6.8)

Thus:

S =
M4
3 −N2

M2 −N
; (6.9)

a =
(M2 −N)2

M4
3 −N2

· (6.10)

If M2 − N < 0 or if M4 < 3N2, S and a are set to 0. If a > 1, a is set to 1 and
S is estimated only from the variance. We used these simple rules for estimating
the model parameters at each wavelet scales.

Experimentations. In Figure 11 the denoised images obtained for b1 (left),
b2 (middle) and b3 (right) with this algorithm (FONDW) are displayed. The
SNRs are respectively 28.38, 13.15 and 1.84. The softening function is scale/scale
determined by an algorithm free of tuning parameter. It is automatically adapted
to the SNR.

At this experimentation level, the redundant à trous algorithm with MMSE
carried out the best denoisings.
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Fig. 11. The images resulting from the algorithm based on a scale/scale posterior ex-

pectation.

7 Application to astronomical image deconvolution

7.1 Image deconvolution using the wavelet transform

The direct inversion. The trivial image restoration would consist to denoise the
image and to inverse the result (Starck & Bijaoui 1994). This method furnishes
correct solutions for a regular blurring operator; but, it is not adapted to the case
of a PSF with frequency holes.
The application of iterative inversions. Instead to inverse using the FFT, it is
possible to apply an iterative scheme. Necessarily, the number of iterations is lim-
ited. This number plays a regularization role. For example, two classical iterative
algorithms, the Van-Cittert and the Landweber ones are further presented. The
information is not similarly restored for each frequency. If the modulation transfer
function (MTF) is high the convergence is very fast; in contrast, the convergence
is very low for the smallest MTF values. The number of iterations allows the
obtention of a frequency filter depending of the MTF.

Many other iterative algorithms were proposed, such that the Richardson-Lucy
one (Lucy 1974); which is very popular in the astronomical laboratories, due to
its tendency to carry out images with point-like structures.
The wavelet-vaguelette decomposition. The multiresolution analysis carries out
a linear representation with wavelet functions. The inversion is a linear opera-
tion so that the previous wavelet representation can be directly translated into a
vaguelette decomposition; the vaguelettes being the wavelet functions deconvolved
with the PSF (Donoho 1992). This is also convenient for a regular operator, but
not adapted to a singular one.
The mirror wavelet. Among the different proposed methods, Kalifa et al. (2003)
proposed first to deconvolve the image and then to denoise taking account a soft
thresholding with mirror wavelet bases. This decomposition is a specific wave
packet (Coifman & Wickerhauser 1992) for which the frequency band is decom-
posed like a mirror compared to the wavelet decomposition. This property allowed
them to improve the signal localization both spatially and in frequency.
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The multi resolution CLEAN. Wakker et al. (1988) proposed a restoration method
for aperture synthesis images based on a two-stages CLEAN algorithm, with iden-
tification of Dirac peaks and extended Gaussians. Starck et al. (1994) developed
this idea in the framework of the wavelet transform. The algorithm is similar to
the matching pursuit one, with specific wavelet functions.
The application of the basis pursuit. In the previous method, the goal was to
represent the image with few wavelet patterns. The basis pursuit algorithm allows
the obtention of a solution, with an �1 minimization (Daubechies et al. 2004).

7.2 The Van Cittert and the Landweber iterative inversions

The basic relation. Let us consider the classical inverse problem without noise
Y = AX. Van Cittert (1931) introduced a simple iterative inversion algorithm.
The idea consists into writing B = I −A; where I is the identity matrix. Thus,
the solution is written as:

X = [I−B]−1Y. (7.1)

If all the B eigenvalues are in the open interval ]−1, +1[, it can be derived that:

X = [I + B + B2 + . . .]Y. (7.2)

The development is limited at the order n:

X(n) = [I + B + B2 + . . . + B(n)]Y. (7.3)

That leads to:

X(n) = Y + B[I + B + B2 + . . . + B(n−1)]Y; (7.4)

Or:
X(n) = Y + BX(n−1) = Y + [I−A]X(n−1). (7.5)

Thus, finally:
X(n) = X(n−1) + [Y −AX(n−1)]. (7.6)

The convergence factor. It is also possible to accelerate the convergence by the
introduction of a convergence factor αn:

X(n) = X(n−1) + αn[Y −AX(n−1)]. (7.7)

Its best value is reached for the minimum norm of R(n) = Y −AX(n):

αn =
R(n−1)AR(n−1)

|AR(n−1)|2 · (7.8)

The distance minimization. With the previous algorithm, the algorithm does not
converge if A is singular, i.e. it exists null eigenvalues (λp = 0). In the direction
of the corresponding eigenvectors the equation is written as Yp = λpXp = 0. If
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Yp �= 0 the equation is not consistent. Thus, the problem is modified by writing
r = |Y−AX|2 is minimum. That leads to:

AT [Y −AX] = 0; (7.9)

which is written as:
AT Y = AT AX. (7.10)

For λp = 0, we get 0 = 0. The system is now underdetermined but consistent. A
unique solution can be obtained by regularization. A classical constraint consists
into setting Xp = 0 for λp = 0 (minimum energy).
The Landweber algorithm. The Van-Cittert algorithm is applied to Equation (7.10).
That leads to:

X(n) = X(n−1) + αnAT [Y −AX(n−1)] = X(n−1) + αnAT R(n−1). (7.11)

This relation is known as the Landweber algorithm, which can be directly devel-
oped from a gradient descent (Landweber 1951). αn is computed as it is upper
indicated for the Van Cittert The previous approach allows the comparison be-
tween the two algorithms for the convergence. In Relation 7.10 the data are
smoothed by the joint matrix. For an eigendirection p, the left value is λpYp. If
λp = 0, its value becomes also null in this direction. The eigenvalue of AT A is
λ2

p, always positive or null. If we consider a non null eigenvalue, the convergence
is always assumed. For a null eigenvalue the algorithm keeps the initial value. If
we set X(0) = 0, no new information is added. Thus, the algorithm furnishes the
solution which minimizes the energy.

The convergence speed depends on the matrix conditioning, i.e. the ratio
between the highest eigenvalue and its lowest (and different from 0) one of the
matrix AT A. Many methods were proposed to accelerate the convergence. The
conjugate gradient is the most popular one (Hestenes & Stiefel 1952).

7.3 Deconvolution from the significant residual

The significant residuals. The Landweber algorithm consists into the addition
of the residual R(n−1) smoothed with the adjoint matrix AT to the previous
approximation. Even if the solution at step (n − 1) is not noisy we add a noisy
residual. The smoothing by the joint matrix removes only a part of the noise.
Thus it is needed to denoise the residual in order to avoid adding noise to the
solution. It is considered that it is the same noise for the successive residuals
than for the signal Y. In (Murtagh et al. 1995) different iterative inversion
algorithms were examined. The Van-Cittert and the Richardson-Lucy ones are also
available for that purpose. I prefer to present the algorithm using the Landweber
algorithm, more stable than the other ones. In the previous sections different
denoising methods were examined. The best ones have to be applied. In (Murtagh
et al. 1995) a hard thresholding was applied. Upper, it was clear that the Bayesian
posterior mean leads to the best results for the different SNRs. It is thus chosen
for the deconvolution algorithm.
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The deconvolution algorihm. It is the following:

1. Set X(0) = 0 and n = 1.

2. Z = AX(n−1).

3. R = Y − Z.

4. R is denoised to R̃.

5. S = AT R̃.

6. αn = S.R̃/|S|2.

7. X(n) = X(n−1) + αnS and n = n + 1.

8. According to the chosen convergence criterion (number of iterations, residual
energy ...) the algorithm stops or comes back to step 2.

The positivity constraint. Generally the astrophysical sources are positive func-
tions. A background is preliminary subtracted in order to get a positive image
function. The positivity constraint can be easily satisfied by a thresholding to pos-
itive values at each iteration. The application of this constraint to a deconvolution
with a PSF having frequency holes may lead to a significant gain in resolution.
The deconvolution experiments. The simulated image was smoothed with a
Gaussian PSF having the size 1 (Msg1), 2 (Msg2) and 4 (Msg4). A white Gaussian
noise was added with the deviations 0.007, 0.07 and 0.7. The applied deconvo-
lution program was based on the FONDW denoising. The residuals are scale by
scale examined. The wavelet coefficients are softened with a filter derived from
the Miyasawa relation. Their histograms are fitted with the Gaussian mixture
associated to the simple model. After deconvolution, the SNR for the deconvolved
image compared to the initial one (Mel1) is computed. The SNR for the denoised
image compared to the blurred image, free of noise, is also determined.
The results. In Figure 12 the denoised and restored images obtained with this
algorithm (dgondw) are displayed for the Mel1 image blurred with a Gaussian
PSF with σ = 1. The lines correspond respectively to the b1, b2 and b3 images.
At left the smoothed noisy images, at middle the smoothed denoised ones and at
right the Mel1 restoration. In Table 3 the resulting SNRs are given. It can be noted
that the deconvolved images for b1 and b2 lead to a better SNR than the images
obtained without blurring. That is probably due to the a regularization effect
introduced by the Landweber iterations. In Table 3 the SNRs for the restored
images with a blurring at σ = 2 and σ = 4 are also indicated. The positive
constraint brings a significant gain, especially for a low SNR. For a large PSF, the
number of iterations inside the Landweber algorithm was also increased to improve
the results for a high SNR. On Figure 13 the denoised and restored images are
displayed for σ = 4.
The denoising from deconvolution taking into account an hypothetic PSF. In the
previous paragraph the denoising derived from a deconvolution with a known PSF.
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Fig. 12. The blurred noisy images at σ = 1 (left), its resulting denoised (middle) and

restored images (right).

Table 3. SNR resulting from the deconvolution experiments. p: the positivity constraint

is applied; x: 100 iteration steps were done instead to 10. (s) means smoothing and (d)

deconvolution.

Image (s)b1 (d)b1 (s)b2 (d)b2 (s)b3 (d)b3
Msg1 29.90 28.89 14.47 14.03 −1.12 −1.27
Msg2 30.02 27.25 13.87 12.78 −0.16 −0.42

Msg2 p 30.67 28.29 15.54 1.79 1.52
Msg4 p 30.56 14.07 15.32 11.48 0.82 0.08
Msg4 px 30.90 22.35 14.97 11.30 −0.35 −2.12

It can be noted that the SNRs were very fine. But the comparison was done to
the blurred images without noise (Msg1, Msg2, Msg4) and not to the initial one
(Mel1).
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Fig. 13. The blurred noisy images at σ = 4 (left), its resulting denoised (middle) and

restored images (right).

Table 4. The SNRs obtained after denoising taking into account an hypothetic PSF.

The first number is the size of the hypothetic Gaussian PSF. x means that 100 iteration

steps were done instead of 10.

PSF size b1 b2 b3
1 29.99 15.55 1.65
2 30.11 15.24 1.72

4 x 30.11 15.80 2.69

It is posed that the observed image (for example b1) is the noisy blurred
version of an image with a Gaussian PSF but of unknown width. Different widths
are tested. The denoised image obtained after deconvolution is compared to Mel1.
If the chosen PSF is close to a Dirac peak, no gain can be obtained compared to a
direct denoising. For a too extended chosen PSF, information is lost on the details
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Fig. 14. The denoisings obtained from a deconvolution from an hypothetic PSF at σ = 4.

at small scales. In Table 4 the resulting SNRs are given for different PSF. In the
whole cases the positivity constraint was applied. On Figure 14 the denoised Mel1
images are displayed for σ = 4. They correspond to the best denoised images.

It can be noted that the best SNRs were obtained with the present method.

8 Conclusion

The study limits. In the present paper, an introduction to the image restoration
using multiscale methods was given. A large number of papers were published
since two decades on this topic. The paper was centered on the use of a peculiar
algorithm, the à trous one, for the restoration of astrophysical images corrupted by
a white Gaussian noise. In the literature a large panel of transforms and different
noises were examined.
The Poisson case. Many modern astronomical detectors furnish images for which
the noise statistics is dominated by the photon noise. That led to introduce specific
methods to restore these images with a Poisson noise (Murtagh et al. 1995). Dif-
ferent methods were proposed to quantify the significance of a wavelet coefficient.
A simple way consists into the transformation of the initial pixel values such its
variance becomes constant. The Anscombe transform (1948) was first proposed.
The results are fine for a mean number of photons greater than about 10. Below
this value, other strategies were proposed (Fadda et al. 1998; Bijaoui & Jammal
2001; Jammal & Bijaoui 2004; Zhang et al. 2008).
Other cases. Different other noise processes were also considered. A generalization
of the Anscombe transform was proposed to process images with a mixing of a
Gaussian and a Poisson noise (Murtagh et al. 1995). More generally the noise
properties can be provided by a table. That leads to laborious computations to
estimate for each wavelet coefficient its distribution.
Oriented wavelets. Orthogonal DWT carries out simple directional information.
Discrete CWT allows the application of oriented wavelets using the FFT (Antoine
et al. 1996). The steerable pyramids were introduced in order to overcome the
limitations of orthogonal separable wavelet decompositions that do not represent
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oblique orientations well (Simoncelli et al. 1992). This transform is shift invariant
and also rotation invariant. Kingsbury (2002) generalized the use of complex DWT
for the image processing. This transform allows an approximate shift invariance
and some oriented information. More recently an oriented transform based on
wavelets and the lifting scheme was introduced by Chapellier & Guillemot (2006)
for image compression. This work brings a general framework for oriented DWTs.

Other representations. This paper was oriented to the application of the discrete
transforms derived from the continuous one. Other multiscale representations
were mentioned such that the ridgelets, the curvelets or the wave packets. Many
other multiscale geometric representations were developed with a directional and
frequency selectivity (Jacques et al. 2011).

A quality criterion for a given image. Beyond the proposed representations, the
main problem resides in their capability to best restore the images. But, what
is “a best restored image”? Here, the SNR was the alone considered criterion.
The search of sparse representations leads to images which a clean appearance,
fully denoised. But that does not mean that the results are better than the ones
obtained with other algorithms leading to a faint noisy appearance. The posterior
expectation leads to a better estimation than the MAP in term of quadratic error,
even if residual fluctuations can be identified.

In fact, the main question concerns the use of the restored images. The image
restoration is only a step in the image analysis. The astrophysicists are interested
by the detection and the characterization of cosmic sources. They apply on the re-
stored images programs for the source identification. Thus, more accurate quality
criteria may derive from the detection rate, the false-alarm rate and the quality of
the resulting measurements. This feature is fully outside this present introduction.
Nevertheless the readers can get useful information on these questions inside the
reference papers.

I thanks Pr. D. Mary and Pr. D. Nuzillard for their helpful comments on the draft version.
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Högbom, J., 1974, A&ASS, 15, 417

Holschneider, M., Kronland-Martinet, R., Morlet, J., & Tchamichian, P., 1989, in
Wavelets Combes, ed. J.M. et al. (Springer-Verlag), 286

Hou, H., & Andrews, H., 1978, IEEE ASSP, 26, 508

Jammal, G., & Bijaoui, A., 2004, Signal Proc., 84, 1049

Esteban, D., & Galland, C., 1977, in Proc. ICASSP, 191

Kalifa, J., Mallat, S., & Rougé, B., 2003, IEEE IT, 12, 446
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