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CONSTRAINED MINIMIZATION ALGORITHMS

H. Lantéri1, C. Theys1 and C. Richard1

Abstract. In this paper, we consider the inverse problem of restoring an
unknown signal or image, knowing the transformation suffered by the
unknowns. More specifically we deal with transformations described by
a linear model linking the unknown signal to an unnoisy version of the
data. The measured data are generally corrupted by noise. This aspect
of the problem is presented in the introduction for general models. In
Section 2, we introduce the linear models, and some examples of linear
inverse problems are presented. The specificities of the inverse problems
are briefly mentionned and shown on a simple example. In Section 3,
we give some information on classical distances or divergences. Indeed,
an inverse problem is generally solved by minimizing a discrepancy
function (divergence or distance) between the measured data and the
model (here linear) of such data. Section 4 deals with the likelihood
maximization and with their links with divergences minimization. The
physical constraints on the solution are indicated and the Split Gradient
Method (SGM) is detailed in Section 5. A constraint on the inferior
bound of the solution is introduced at first; the positivity constraint is
a particular case of such a constraint. We show how to obtain strictly,
the multiplicative form of the algorithms. In a second step, the so-
called flux constraint is introduced, and a complete algorithmic form
is given. In Section 6 we give some brief information on acceleration
method of such algorithms. A conclusion is given in Section 7.

1 Introduction

Inverse problems arise in a variety of important applications in science and indus-
try, such as optical and geophysical imaging, medical diagnostic, remote sensing.
More generaly such problem occurs when the measured quantities are not directly
the quantities of interest (parameters). In such applications, the goal is to estimate
the unknown parameters, given the data. More precisely, denoting y the measured

1 Laboratoire Lagrange, UMR 7293, Université de Nice Sophia Antipolis, CNRS,
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data (output of a physical system, generaly corrupted by noise), x the input of
the system, m(a, x) the model and a the internal parameters of the model (m(., .)
is a known function), four cases must be considered:

– when y, m(., .) and x are known, the goal is to identify the optimal values
of the internal parameters a of the model m(a, x);

– when y, m(., .) and a are known, the goal is to found the optimal value of x;

– when x, m(., .) and a are known, y is easy to compute; it is the direct
problem;

– when y, m(., .) only are known, we can say that we have a “blind inverse
problem” which is much more difficult to solve than the previous ones (see
for example NMF and blind deconvolution).

To solve such inverse problems we are generally faced with the problem of min-
imization of a discrepancy function between the noisy data y and the (unnoisy)
model m(a, x). The discrepancy function must deal with significant properties
from the physical point of view, and must leads to a mathematically tractable
minimization problem.

Moreover, to be physically acceptable, the solution is subjected to some specific
(physical) constraints that have to be taken into account during the minimization
process.

In this paper we are mainly concerned with physical processes described by a
linear model. An algorithmic method allowing to deal with the minimization of any
stricly convex differentiable discrepancy function is proposed; classical constraints
such as positivity and fixed sum (integral) are taken into account.

2 Inverse problems with linear models
(Bertero 1989; Bertero et al. 1998)

2.1 Linear models

In this case, the model m (a, x) is simply described by a linear relation between
the unknown (input) signal x and the unnoisy transformed signal ỹ (output), we
simply write:

ỹ = m (a, x) = Hx. (2.1)

More generally, if H (the parameters of the system) is known, for a given x, we
can compute ỹ.

On the other hand we have the experimental data y, that is a noisy version
of ỹ. The problem is to find a solution x such that Hx is as close as possible to y.
This is generally performed by minimizing a discrepancy function between y and
Hx, eventually subject to constraints.
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This brief presentation shows that we are typically dealing with an inverse
problem (Bertero et al. 1998) whose difficulties will be briefly indicated in the
following sections. We first give some examples of problems in which the model is
described by a linear relation.

2.2 Some examples of linear models

2.2.1 Linear unmixing (Heinz & Chang 2001)

In such problems, the model is described by the relation ỹ = Hx. The experimen-
tal data y is a one dimensional optical spectrum sampled at various (equispaced)
wavelenghts; these (noisy) observations are obtained for example by the spectro-
scopic analysis of the light contained in a given pixel of an image. The matrix
[H ] is formed by the juxtaposition of columns containing the (known) spectra of
basis possible component (the endmembers, that is, the elements of a dictionnary),
sampled at the same wavelenght as the data. The unknown vector x contains the
weights (abundances) corresponding to the endmembers, so that the data vector is
described as a weighted sum of the endmembers. The constraints in this problem
are the following: the weights must be positive or zero, moreover their sum must
be 1 (that is, they express a percentage).

One can think that in order to solve this problem in full generality, a supple-
mentary condition must be that the sum of the components of the data, and the
sum of the components of the endmembers must be equal.....

2.2.2 Non negative Matrix Factorization N.M.F. - Hyperspectral data
(Lee & Seung 2001; Cichocki et al. 2009)

Extending first the previous problem, the model can be described by a matrix
equation

[
Ỹ
]

= [H ] [X ]. The matrix [H ] is the one described in the previous
problem, it contains the “endmembers”. The unknowns are organized in a matrix
[X ], each column of this matrix contains the weights (abundances), so that the
column “n” of

[
Ỹ
]

is modeled as the sum of the endmembers (columns of [H ])
weighted by the elements of the column “n” of [X ].

The experimental data are organized in a matrix [Y ]; each column of [Y ] is
an optical spectrum analogous to those considered in the previous problem, they
correspond to all the pixels of an image. If the matrix [H ] is known, the problem
will be a simple succession of “linear unmixing” problems.

The NMF problem becomes much more complicated because the endmembers
are not known, so that the matrix [H ] is unknown as well as [X ].

Roughly speaking, the problem is then: knowing the (noisy) data matrix [Y ]
described as the product of two matrix [H ] and [X ], found such two matrices
subject to some constraints.
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2.2.3 Deconvolution
(Andrews & Hunt 1977; Demoment 1989; Bertero et al. 2008)

Let us consider the case of images. In the space of continuous functions, the
model is described by a first kind Fredholm integral with space invariant kernel.
After discretization, the data (noisy blurred image), the point spread function
(PSF) and the unknown object are obtained as tables of dimensions (N*N) and
the model is described by a discrete convolution between the PSF and the object
(that can be easily performed using FFT). However for sake of generality, we adopt
a matrix notation, so that the columns (or rows) of the data and of the unknown
object tables are organized in stack vectors y and x respectively (lenght N2), the
transformation matrix H is then (N2∗N2), moreover, if the kernel of the Fredholm
equation is space invariant, H is Block-Toeplitz; note that this is not the case for
example in medical imaging where, while we have a linear model, the kernel is no
more space invariant and corellatively, the matrix H does not have any specific
property.

Let us focus more specifically on the deconvolution problem for astrophysical
imagery. In such a case, the kernel of the integral equation is not only space
invariant, but also positive and moreover, its integral is equal to 1, so that the
convolution (blurring operation) of a positive object of known integral gives a
positive image with the same integral; such a convolution acts as a low pass spatial
filtering operation. The intensities in the image pixels have been redistributed,
while the total intensity in the image is equal to the total intensity in the object.

For the discretized problem, this is analogous to say that each column of the
matrix H is of sum 1.

The first constraint of our problem is then: the “solution must be positive
or zero”, while a second constraint will be “the flux must be maintained”. Fre-
quently, this last constraint is not clearly taken into account. One can consider
that the deconvolution problem is closely related to the “linear unmixing” problem
with however some specific difficulties due to the low pass filtering effect of such
convolution.

2.2.4 Blind deconvolution (Ayers & Dainty 1988; Lane 1992)

The blind deconvolution can be considered with respect to the classic deconvo-
lution as an analogous of the NMF problem with respect to the linear unmixing
problem. Indeed, the data model boils down to the convolution product of two
unknown functions, then, the number of unknown is (two times) higher than the
number of data values; the convolution is however commutative, while for NMF,
the matrix product is not, moreover the specific problems appearing in classic de-
convolution obviously remains. Then, this problem is very hard to solve and it is
out of the scope of the present analysis.
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2.3 Some generalities on inverse problems

Inverse problems are generally ill-posed problems in the sense of Hadamard; the
conditions of Hadamard (1923) for well-posed problems are:

– the solution must “exist”

– the solution must be “unique”

– the solution must be “stable with respect to the measurement errors”
(the noise).

If any of these conditions is not fulfilled, the problem is “ill-posed”.
While in finite dimensional spaces, the difficulties linked to the existence and

uniqueness of the solution could be circumvented, the problem of stability remains
because it is a consequence of the ill-conditionning of the matrix H , that is the
condition number K of the matrix H (ratio of the maximum singular value to the
minimun singular value K = λMax

λmin
) is high.

To clarify this point in a very simple way, let us consider a simple system of
two linear equations with two unknowns, illustrated in Figures 1 and 2.
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Fig. 1. For a system of two equations with two unknown, three cases are examined,

depending on the condition number of the matrix H.

The Figure 1 correspond to the case of an unperturbed system (no noise added).
In Figure 1 (upper left), the two lines are almost orthogonal (K ≈ 1), the system
is very well conditionned. If we think for example, to solve the system with an
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iterative method operating by successive orthogonal projections on the two lines
(1 iteration = 2 projections), it is clear that only a very small number of iterations
is necessary to reach an acceptable point (close enough to the solution).

In Figure 1 (upper right), the condition number K has been increased, the two
lines are no more orthogonal. Using the iterative method previously described,
the iteration number allowing to reach the solution has been increased, but we can
expect to reach an acceptable point.

In Figure 1 (lower), the value of K has been strongly increased, the problem
is now ill-conditionned, clearly, the solution is always unique, but the necessary
number of iterations heavily increases.

To summarize, the only difference between the three cases is an increase of
the iteration number and then of computing time when the problem become
ill-conditionned.
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Fig. 2. For a system of two equations with two unknown, three cases are examined,

depending on the condition number of the matrix H. A small amount of noise ε has been

added to the unnoisy data ỹ.

In Figure 2, a small amount of error (noise) has been added to the data.
Depending on the value of the error, the lines remains parallel to themselves,

but moves in their respective shaded areas.
Clearly, there will be always one and only one solution that will be located

somewhere in the intersection of the two shaded areas.
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In Figure 2 (upper left), the solution is close to the one of the initial noiseless
problem Figure 1 (upper left) then, a small error on the data will corresponds to
a small error on the solution, this behavior is typical of the well-posed problems.
In Figure 2 (upper right), the condition number K increases as in Figure 1 (upper
right). The solution is always unique and located in the intersection of the shaded
areas, but it can be in some cases far from the solution of the initial noiseless
problem. In Figure 2 (lower), K has a very large value, the problem is now ill-
conditionned and the solution can be very far from the true solution Figure 1
(lower).

This is a simplebut explicit illustration if the difficulties related to the stability
of the solution with respect to the measurement errors in ill-posed problems.

3 Distances and divergences (Basseville 1996; Taneja 2005)

To solve the inverse problem, i.e. to recover the solution x such that the model
m(a, x) is as close as possible to the noisy data y, we must minimize a scalar
discrepancy function between y and m(a, x) quantifying the gap between them.

Let pi and qi the elements of two data fields p and q, the discrepancy function
D(p, q) between the two fields must have the following properties:

1. D(p, q) must be positive if p �= q

2. D(p, p) = 0

3. D(p, q) must be convex (strictly) with respect to p and q (at least w.r.t. the
field corresponding to the model).

With these properties, D(p, q) is a “divergence”. If, moreover the triangular in-
equality is fullfilled, then D(p, q) is a distance. This last point is not necessary for
our purpose. Finally, we consider that generally, such quantity allowing to deal
with the whole data fields is the sum of analogous distances (divergences) between
corresponding elements of the two fields.

D (p, q) =
∑

i

D (pi, qi) (3.1)

D (y, m (a, x)) =
∑

i

D (yi, {m (a, x)}i) . (3.2)

3.1 Csiszar divergences (Csiszar 1991)

Let f (x) be a strictly convex function, with f (1) = 0, and for our specific use
f

′
(1) = 0; this last property is very important in our case.
The general class of Csiszar divergences is defined as:

Cf (p, q) =
∑

i

qif

(
pi

qi

)
· (3.3)
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Generally Cf (p, q) �= Cf (q, p).
This divergence is jointly convex w.r.t. p and q.

3.2 Divergences founded on convexity measures

3.2.1 Jensen or Burbea-Rao divergences (Burbea & Rao 1982)

This class of divergences is founded on the classical definition of the convex func-
tions that can be expressed as: let f (x), a strictly convex function, and let p and
q two values of the variable, the secant between the points {p, f (p)} and {q, f (q)}
is always superior to the curve between the same points. This is represented in
Figure 3 and expressed by the relation (3.4)

Fig. 3. Strictly convex function.

αf (p) + (1− α) f (q)− f [αp + (1− α) q] ≥ 0. (3.4)

The divergence is then:

Jf (p, q) =
∑

i

{αf (pi) + (1− α) f (qi)− f [αpi + (1− α) qi]} . (3.5)

Note that the convexity of the basis function f (x) does not ensure the conxexity
of the corresponding divergence.

3.2.2 Bregman divergences (Bregman 1967)

These divergences are founded on another property of convex functions:
a (strictly) convex function is always greater than any tangent line, that is to the
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Fig. 4. First order Taylor expansion of a strictly convex function.

first order Taylor expansion of the function; this is represented in Figure 4 and
expressed by the relation (3.6)

f (p)− f (q)− (p− q) f
′
(q) ≥ 0. (3.6)

The Bregman divergence is then:

Bf (p, q) =
∑

i

{
f (pi)− f (qi)− (pi − qi) f

′
(qi)

}
. (3.7)

Note that this divergence is always convex w.r.t. p, but its convexity w.r.t. q
depends on the function f .

This classification of divergences is artificial because it is founded on their
constructive method only. A Jensen or Bregman divergence can also be a Csiszar
divergence. Moreover, in this brief presentation, we do not consider the extensions
or generalization of these divergences, but it is important to know that they exist
and could be used as well. Then, at this point it is clear that there are many ways
to quantify the discrepancy between two data fields; the question is then: how to
choose a “good”, that is a “significant” divergence or distance. A partial answer
is given by the Maximum Likelihood principle.

4 Maximum likelihood solutions (Taupin 1988)

In this case, we take into account the statistical properties of the noise corrupting
the data. We consider that we know the analytical expression of the likelihood
that is of the conditional probability law p (y/x), and we want to obtain the value
of x corresponding to the maximum of this law.

In each pixel the noisy data yi depends on the model [m (a, x)]i which is the
mean value; moreover we assume that the noise realizations in the different pixels
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are independent. In what follows, the internal parameters a of the model are
known, so they are omitted in our notations, [m (a, x)]i = [m (x)]i, then we have:

p (y|m (x)) =
∏

i

p (yi| {m (x)}i) (4.1)

and

max
x

[p (y|m (x)] ≡ min
x

[
− ln

∏
i

p (yi| {m (x)}i)
]

. (4.2)

The solution x is obtained as:

x = arg min
∑

i

− ln [p (yi| {m (x)}i)] . (4.3)

Two cases are generally exhibited in the literature corresponding to physical situ-
ations, the zero mean Gaussian additive noise and the Poisson process. We now
examine these two cases and we show the relations with the divergences minimiza-
tion problem.

4.1 Gaussian additive noise case

The likelihood is given by:

p(y |x) = p(y |m (x)) ≈
∏

i

exp− [yi − {m (x)}i]
2

σ2
i

(4.4)

where σ2
i is the noise variance in the pixel i. This leads to an objective function

which is the Euclidean distance between y and m (x) in a space weighted by the
variances:

J (x) = − ln[p (y |m (x))] ≈ 1
2

∑
i

[yi − {m (x)}i]
2

σ2
i

· (4.5)

If the variance is not known or if the variance is identical for all the pixels, we
obtain the pure Euclidean distance:

J (x) ≈ 1
2

∑
i

[yi − {m (x)}i]
2 . (4.6)

One can observe that such a distance is defined for any value of x even if m(x) ≤ 0.

4.2 Poisson noise case

The likelihood is given by:

p(y |x) = p(y |m (x)) =
∏

i

[{m (x)}i]
yi

yi!
exp [−{m (x)}i] (4.7)
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J (x) = − ln[p (y |m (x))] =
∑

i

{m (x)}i + ln yi! + yi ln
yi

{m (x)}i
· (4.8)

Which is equivalent to:

J (x) =
∑

i

{m (x)}i − yi + yi ln
yi

{m (x)}i
· (4.9)

This expression is the Kullback-Leibler divergence (Kullback & Leibler 1951),
adapted to data fields that are not necessarily probability laws. On the contrary
to the Euclidean distance, one can note that the K.L. divergence is not defined
if m (x) ≤ 0. In the case of our linear model x > 0 ⇒ m (x) = Hx > 0. When
the positivity constraint is required, the constraints domain is entirely contained
in the domain of the objective function J(x). Then if the solution is searched
for in the constraints domain, the minimization can be performed. It is one of
the reasons which leads to use an interior points algorithmic method. In such an
iterative method, the successive estimates are feasibles solutions i.e. they fulfill
all the constraints. We propose now a minimization method dealing with strictly
convex differentiable functionnals, subject to a constraint on the inferior bound of
the solution. The positivity constraint will appear as a particular case.

5 The Split Gradient Method (SGM)

This iterative method has been developped initially in the context of the
deconvolution problem with non negativity constraint (Lanteri et al. 2001, 2002a,b).
The multiplicative form of the algorithms is an obvious byproduct. It can be easily
extended to regularized functionnals. The method is founded on the
Karush-Kuhn-Tucker (KKT) conditions (Bertsekas 1995). We first recall these
conditions. A simple example with only one variable clarifies this point.

5.1 Karush-Kuhn-Tucker conditions for inequality constraints

We denote J1 (x), the “data consistency” term, J2 (x), the “regularization” term
and γ ≥ 0, the regularization factor. The problem is to minimize w.r.t. x, the
strictly convex differentiable functionnal: J (x, γ) = J1 (x) + γJ2 (x).

The constraints are: xi ≥ mi ≥ 0 ∀i ⇒ xi −mi ≥ 0 ∀i.
In what follows, the parameter γ will be omitted for sake of clarity.
Let us denote λ the Lagrange multiplier vector, and 〈., .〉 the classical inner

product.
The Lagrange function writes:

L (x, λ) = J (x) − 〈λ, (x−m〉) . (5.1)

The KKT conditions writes: at the solution (x∗, λ∗)

∇xL (x∗, λ∗) = 0 ⇒ λ∗ = ∇xJ (x∗) (5.2)
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λ∗ ≥ 0 ⇒ ∇xJ (x∗) ≥ 0 (5.3)

〈λ∗, (x∗ −m)〉 = 0 ⇒ 〈∇xJ (x∗) , (x∗ −m)〉 = 0. (5.4)

This last condition must be understood as:

[∇xJ (x∗)]i (x∗
i −mi) = 0 ∀i. (5.5)

Indeed, because x∗
i −mi ≥ 0 ∀i, and [∇xJ (x∗)]i ≥ 0 ∀i, the inner product will be

zero if and only if all the terms of the inner product are separately 0.
The Split Gradient Method is founded precisely on this condition.
The KKT conditions for inequality constraints can be understood easily on a

simple example for a function of one variable f(x) with an inferior bound constraint
x ≥ m.

x m 
x 

m 

0

0)(
*

*

mx
xJx

 
 0)( *xJx

0

0)(
*

*

mx
xJx

0* mx

x 
m

*x

Fig. 5. Illustration of KKT conditions for non negativity constraint in the one dimen-

sional case.

Let us consider the case represented in Figure 5 (upper right).
The minimum of the function is clearly reached for x such that f

′
(x) = 0.

The solution is the same to the one of the unconstrained problem; in the case of a
function of several variables, the solution will be reached when [∇xf (x)]i = 0, for
the corresponding components i.

Then, for such indexes, (xi −mi) [∇xf (x)]i = 0 because [∇xf (x)]i = 0.
In Figure 5 (upper left), the solution is on the constraint x − m = 0. At

this point, we have λ = f
′
(x) > 0. In a multi variables case the equivalent

condition will be: if a component i is on the constraint xi −mi = 0, we will have
λi = [∇xf (x)]i > 0, so that for each component on the constraint, we will
have (xi −mi) [∇f (x)]i = 0.
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In Figure 5 (lower), the minimum of the function is exactly on the constraint,
so that we have simultaneously x −m = 0 and f

′
(x) = 0, then obviously, their

product is zero. In a multi variables case the equivalent condition will be: if
a component i is on the constraint xi − mi = 0, and if moreover for the same
components, we have λi = [∇xf (x)]i = 0, for such components we will have
(xi −mi) [∇xf (x)]i = 0.

Then for each component of the solution, the KKT condition expresses as:
(xi −mi) [∇xf (x)]i = 0.

5.2 Principle of the Split Gradient Method

The problem is set as: let γ ≥ 0 and y the noisy data, found

x = arg min J (x, γ) = J1 (x) + γJ2 (x) . (5.6)

Subject to the constraint
0 ≤ mi ≤ xi ∀i. (5.7)

Moreover, in the particular case mi = 0 ∀i, we will introduce a supplementary
equality constraint: ∑

i

xi =
∑

i

yi. (5.8)

In a first step the equality constraint is not considered; it will be introduced later.
Considering now that for convex differentiable functionnals such as J (x, γ) ≡
J (x), the negative gradient is a descent direction, we want to solve w.r.t. x an
equation of the form:

[−∇xJ (x∗)]i (x∗
i −mi) = 0 ∀i. (5.9)

Note that the multiplication of this equation by a positive term do not change
solution.

Then, an iterative algorithm can be writen in the form:

xk+1
i = xk

i + αk
i

(
xk

i −mi

) [
−∇xJ

(
xk

)]
i
. (5.10)

In this algorithm, αk
i is a positive descent step that must be computed to ensure

the convergence of the algorithm. Moreover the form of the algorithm implies that
at each iterative step, we must ensure that xk

i −mi ≥ 0. This last point is of major
importance in SGM.

The negative gradient is now written as the difference between two positive
quantities U

(
xk

)
and V

(
xk

)
:

−∇xJ
(
xk

)
= U

(
xk

)
− V

(
xk

)
. (5.11)

Obviously, such a decomposition is not unique, indeed a constant term can be
added and subtracted to the gradient, leading to shifted values of U and V , with
the only condition that the shifted values remains positive.
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We then propose to modify the algorithm as follows:

xk+1
i = xk

i + αk
i

(
xk

i −mi

) 1
[V (xk)]i

⎡⎢⎣U
(
xk

)
− V

(
xk

)︸ ︷︷ ︸
−∇J(xk)

⎤⎥⎦
i

· (5.12)

In the rest of the paper, we will use for sake of clarity, the notations:[
U

(
xk

)]
i
= Uk

i and
[
V

(
xk

)]
i
= V k

i .
We can observe that the descent property is maintained even if the descent

direction is changed.
The starting iterate will be x0

i ≥ mi, ∀i.
The first step of the method is to compute for each component of the solution

vector, the maximal step size ensuring xk+1
i ≥ mi ∀i, knowing that xk

i ≥ mi ∀i.
Obviously, such restriction on the step size is only necessary for the indexes i

for which [∇J (x)]i ≥ 0.
This leads to:

αk
i ≤

V k
i

V k
i − Uk

i

· (5.13)

Then, at the iteration “k” the maximal step size allowing to fulfill the inferior
bound constraint for all components, will be:

αk
Max = min

i

[
αk

i

]
. (5.14)

We note that αk
Max ≥ 1.

As a consequence, with a stepsize equal to 1 the inferior bound constraint is
always fulfilled. The proposed algorithm can then be written in matrix form:

xk+1 = xk + αk
c diag

[
xk

i −mi

]
diag

[
1

V k
i

] (
Uk − V k

)︸ ︷︷ ︸
−∇Jk

· (5.15)

It is a descent algorithm of scaled gradient type, that is of the general form:

xk+1 = xk + αk
cdk. (5.16)

The descent direction is:

dk = diag
[
xk

i −mi

]
diag

[
1

V k
i

] (
Uk − V k

)︸ ︷︷ ︸
−∇Jk

· (5.17)

The descent stepsize αk
c must be computed on the range

[
0, αk

Max

]
to ensure the

convergence of the algorithm. However, if we use a stepsize equal to 1 ∀k, we
obtain a very attractive simple “quasi multiplicative” form, whose convergence is
not demonstrated in full generality, but only in some specific cases:

xk+1 = m + diag
[
xk −m

] Uk

V k
· (5.18)
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For a non negativity constraint (mi = 0 ∀i), the classical multiplicative form is
immediately obtained:

xk+1 = diag
[
xk

] Uk

V k
· (5.19)

In the two last equations, the ratio Uk

V k of the vectors Uk and V k is performed com-
ponent wise. With this simplified form, we can recover two classical algorithms:
ISRA (Daube-Witherspoon et al. 1986) and RLA (Richardson 1972; Lucy 1974)
corresponding respectively to the hypothesis of a Gaussian, zero mean additive
noise, and to a Poisson noise process.

5.3 Examples with non negativity constraint

5.3.1 Gaussian additive noise case - Least squares

As previously indicated in Equation (4.6), the objective function writes:

J (x) =
1
2
‖y −Hx‖2 (5.20)

−∇J (x) = HT y −HT Hx. (5.21)

A decomposition can be:

U = HT y; V = HT Hx (5.22)

Then the algorithm with non negativity constraint, in the non-relaxed form writes:

xk+1
i = xk

i

(
HT y

)
i

(HT Hxk)i

· (5.23)

This is the classical Image Space Reconstruction Algorithm (ISRA) whose conver-
gence has been demonstrated by De Pierro (1987).

If some of the components of V = HT y is negative, we can add to all the
components of U and V, the quantity −min

(
HT y

)
+ ε, so that the shifted values

become positive.

5.3.2 Poisson noise case - Kullback-Leibler divergence

As previously indicated in Equation (4.9), the objective function writes:

J (x) =
∑

i

yi ln
yi

(Hx)i

+ (Hx)i − yi (5.24)

−∇J (x) = HT
( y

Hx
− 1

)
· (5.25)

In this equation the ratio of two vectors is performed component wise; the result
of the operation is a vector. A decomposition can be:

U = HT y

Hx
; V = HT 1. (5.26)
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Then the algorithm with non negativity constraint, in the non-relaxed form writes:

xk+1
i = xk

i

(
HT y

Hxk

)
i

(HT 1)i

= xk
i

(
HT y

Hxk

)
i

ai
· (5.27)

This is the classical E.M. (Dempster et al. 1977), Richardson-Lucy algorithm.
Some remarks then occur:

1. In the previous equation we have introduced the notation:
(
HT 1

)
i

= ai,
howe-ver, in many cases for example in deconvolution problem with a con-
volution kernel normalized to “1”, all the columns of H are of sum 1, that
is ai = 1 ∀i. Unfortunately, an oversimplified expression of the algorithm in
which ai is omitted, frequently appears; this can be a source of errors.

2. The algorithm of Richardson-Lucy with a kernel normalized to “1”, have the
“magic” and unwanted property to be flux conservative, that is∑

i xk
i =

∑
i yi ∀k; this property does not exist with ISRA.

An interesting question is: why?
The answer lies in the particular expression of the K.L. divergence and in the

associated properties.

5.4 Flux (intensity) conservation constraint (Lanteri et al. 2009, 2010)

We propose now to introduce a supplementary equality constraint in order to
take into account the so called flux constraint or fixed sum constraint. While the
method can be applied to the problem adressed in the previous section with a
constant inferior bound constraint (which is typical of deconvolution problems),
for sake of simplicity, we restrict the presentation to the case of a non negativity
constraint.

The equality constraint writes:∑
i

xi =
∑

i

yi. (5.28)

Moreover, because we want to remain in the class of interior points methods, such
a constraint must be fulfilled at each iteration, that is:∑

i

xk
i =

∑
i

yi ∀k. (5.29)

The two previous relations expressing a sum constraint are typical of the deconvo-
lution problem. In problems such as the linear unmixing one, we have to simply
replace

∑
i yi by 1, without changing anything else in what follows.
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The basic idea to take into account this constraint is to use the following
procedure:

• Introduce the variable change:

xi =
ui∑
m um

∑
m

ym. (5.30)

• Proceed to a minimization w.r.t. the new variable u, subject to non nega-
tivity constraint only.

• Go back (correctly) to the initial variables x.

To minimize w.r.t. the new variable u, subject to non negativity constraint, we
use the SGM previously described.

However, a fundamental question arises first: if J (x) is convex w.r.t. x, did
the function J̃ (u) transformed function of J (x) is still convex w.r.t. u?

The answer may be as follows: if during the iterative minimization process
w.r.t. u, we are able to maintain

∑
i uk

i = Cst ∀k, then the convexity w.r.t. u is
ensured.

Moreover, we show that this property will allow us to go back “correctly” to
the initial variables x.

To apply SGM, we compute the gradient of J̃ (u) w.r.t. u

∂J̃ (u)
∂uj

=
∑

i

∂J

∂xi

∂xi

∂uj
· (5.31)

We then obtain after some simple but tedious algebra:

−∂J̃ (u)
∂uj

≈
(
− ∂J

∂xj

)
−

∑
i

ui∑
m um

(
− ∂J

∂xi

)
· (5.32)

We can now use SGM to minimize J̃ (u) w.r.t. u with the non negativity constraint
only, but we want also that

∑
i uk+1

i =
∑

i uk
i ∀k.

To reach such an objective, at first sight, we can choose:

Uj = − ∂J

∂xj
=

(
−∂J

∂x

)
j

(5.33)

Vj =
∑

i

ui∑
m um

(
− ∂J

∂xi

)
=

∑
i

ui∑
m um

(
−∂J

∂x

)
i

·

However, with such a choice, we cannot ensure that Uj and Vj are positive.
To have this property which is necessary in S.G.M., we will choose:

Uj =
(
−∂J

∂x

)
j

−min
(
−∂J

∂x

)
+ ε (5.34)
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Vj =
∑

i

ui∑
m um

(
−∂J

∂x

)
i

−min
(
−∂J

∂x

)
+ ε (5.35)

One can also write:

Vj =
∑

i

ui∑
m um

[(
−∂J

∂x

)
i

−min
(
−∂J

∂x

)
+ ε

]
. (5.36)

Obviously, the shift −min
(
−∂J

∂x

)
+ ε does not change the gradient, but now, we

are sure that Uj and Vj are positive. Let us note that Vj is in fact constant and
independent of the index j.

We can now apply SGM to obtain the relaxed algorithm:

uk+1
j = uk

j + αkuk
j

⎛⎝ (
− ∂J

∂xk

)
j
−min

(
− ∂J

∂xk

)
+ ε∑

i
uk

i∑
m uk

m

[(
− ∂J

∂xk

)
i
−min

(
− ∂J

∂xk

)
+ ε

] − 1

⎞⎠ · (5.37)

The step size αk is obviously computed as indicated in Section 5.2.
In the non relaxed case, that is , with αk = 1 ∀k, we have:

uk+1
j = uk

j

(
− ∂J

∂xk

)
j
−min

(
− ∂J

∂xk

)
+ ε∑

i
uk

i∑
m uk

m

[(
− ∂J

∂xk

)
i
−min

(
− ∂J

∂xk

)
+ ε

] . (5.38)

Clearly, with such form of the algorithm, relaxed or non-relaxed, we will have:∑
j

uk+1
j =

∑
j

uk
j . (5.39)

Then, during the iterative process, the solution uk is positive and remains in the
convexity domain of the objective function J̃ (u). Moreover the flux conservation
property of the previous algorithms (5-37, 5-38) allows us to turn back “correctly”
to the initial variables x. Indeed, multiplying the two members of these algorithms
by

∑
m ym∑

j uk+1
j

=
∑

m ym∑
j uk

j

, and taking into account the change of variables (5-30), the

final algorithm is obtained in the relaxed case as:
Let x0 = Cst ≥ 0 such that

∑
i x0

i =
∑

i yi,

xk+1
j = xk

j + αkxk
j

⎛⎝ (
− ∂J

∂xk

)
j
−min

(
− ∂J

∂xk

)
+ ε∑

i
xk

i∑
m ym

[(
− ∂J

∂xk

)
i
−min

(
− ∂J

∂xk

)
+ ε

] − 1

⎞⎠ · (5.40)

Let us observe that with such a relaxed algorithm, we obtain:∑
i

xk+1
i = (1 − αk)

∑
i

xk
i + αk

∑
i

yi. (5.41)

So that, the flux conservation is related to the properties of the initial estimate,
that is

∑
i x0

i =
∑

i yi.
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In the non relaxed case, that is, with αk = 1∀k, we obtain:

xk+1
j = xk

j

(
− ∂J

∂xk

)
j
−min

(
− ∂J

∂xk

)
+ ε∑

i xk
i

[(
− ∂J

∂xk

)
i
−min

(
− ∂J

∂xk

)
+ ε

] ∑
m

ym. (5.42)

One can easily check that xk+1
i ≥ 0 if xk

i ≥ 0 ∀k, and that
∑

i xk+1
i =

∑
i yi ∀k

even if
∑

i xk
i �=

∑
i yi.

This is basically different of the property of the non-relaxed algorithm.
Unfortunately, to our experience, such beautifull non relaxed algorithm does

not converge, and the relaxed version must always be used. The corollary remark
is that the only effective property concerning the flux constraint will be:∑

i

xk
i =

∑
i

x0
i . (5.43)

All the algorithms founded on SGM are sometimes considered as having a slow
convergence rate. In the relaxed form, the stepsize computation allows to ensure
the convergence and moreover to (slightly) modify the convergence speed. Then
we briefly indicate in the following section the general rules of the acceleration
methods proposed in the literature.

6 Acceleration methods
(Biggs et al. 1997; Nesterov 1983; Beck et al. 2010)

6.1 Principle of the method

Considering that we have a basis convergent algorithm analogous to (5.40), written
in the form:

xk+1 = F (xk). (6.1)

Remember that in such an algorithm, the solution xk+1 is at each step non negative
and of fixed sum if xk is non negative and of fixed sum.

The general form of the acceleration methods proposed in the litterature could
be summarized as follows:

1. Given the initial estimate x0 fulfilling all the constraint, compute x1 (which
obviously fulfill all the constraints).

2. Knowing xk and xk−1, proceed to a linear extrapolation step to obtain the
prediction x̂k+1 as:

x̂k+1 = xk + δk
(
xk − xk−1

)
(6.2)

where the extrapolation step size δk is positive or zero ∀k.

Two expressions allowing to obtain this stepsize are given in (Biggs et al.
1997; Nesterov 1983; Beck et al. 2010); however some supplementary restric-
tions on this stepsize are necessary as indicated in the comments.



322 New Concepts in Imaging: Optical and Statistical Models

3. Proceed to an iteration of the basis algorithm:

xk+1 = F (x̂k+1). (6.3)

6.2 Comments

All the difficulties are in the choice of the extrapolation step size, indeed:

• The extrapolated solution x̂k+1 must be a non negative solution.

Depending on the choice of δk, some components of x̂k+1 can become neg-
ative, this is not allowed; if one think to project orthogonally x̂k+1 on the
space of non negative vectors, then, the flux constraint is not fulfilled; as a
conclusion, the extrapolation step, must lead to x̂k+1 ≥ 0. Then, due to the
linearity of the extrapolation step, x̂k+1 will fulfill the flux constraint.

To fulfill the non negativity constraint on x̂k+1, some restrictions of the
extrapolation step size must be introduced.

• Even if such restrictions are taken into account, the algorithm can be non-
monotonic, that is, the objective function can increase locally. This could
be a source of problems.

The solution generally proposed is simply to remove the extrapolation step
when this happens.

• If the extrapolation is too strong, the accelerated algorithm may even di-
verge.

Then, clearly, the main problem is in the value of the extrapolation step size. Even
if several methods are proposed in the literature to compute such a step size, as far
we know, the convergence of accelerated algorithms is not clearly demonstrated
and remain an open problem.

7 Conclusion

In the present work, we analyze mainly the inverse problems in which the overall
effect of the physical system corresponds to a linear transformation of the input
signal. The discrepancy between the experimental noisy data and the linear model
must be quantified. Several classes of divergences or distances are then proposed
as discrepancy functions. The problem is then to recover the unknown signal by
minimization of the adequate divergence, subject to physical constraints.

The main point of this presentation is the Split Gradient Method. When this
method has been elaborated, the objective was to recover, using classical opti-
mization ideas, several algorithms that have been proposed in the field of image
restoration or deconvolution. The main constraint introduced in these problems
was the non negativity constraint. More generally such constraint has been ex-
tended to an inferior bound constraint.
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In a second step, we have taken into account explicitely the flux conservation
or the fixed sum constraint. The corresponding algorithms have been exhibited
in the context of the SGM. These algorithms have been applied successfully in
the fields of linear unmixing, NMF and deconvolution. Finally, the acceleration
method of such algorithms is considered and briefly discussed at the end of the
paper.

References

Bertero, M., 1989, Adv. Electr. Elect. Phys., 75, 1

Bertero, M., & Boccacci, P., 1998, Introduction to inverse problems in imaging (IOP
Publishing)

Heinz, D.C., & Chang, C.I., 2001, IEEE. Trans. G.R.S, 39, 529

Lee, D.D., & Seung, H.S., 2000, NIPS

Cichocki, A., Zdunek, R., Phan, A.H., & Amari, S.I., 2009, Non negative matrix and
tensor factorization (J. Wiley)

Andrews, H.C., & Hunt, B.R., 1977, Digital Image Restoration (Prentice Hall)

Demoment, G., 1989, IEEE Trans. ASSP, 12, 2024

Bertero, M., Lanteri, H., & Zanni, L., 2008, in Mathematical methods in Biomedical
imaging and IMRT (Edizioni della normale, Pisa)

Ayers, G.R., & Dainty, J.C., 1988, Opt. Lett., 13, 428

Lane, R.G., 1992, J. Opt. Soc. Am. A, 9, 1508

Hadamard, J., 1923, Lectures on the Cauchy problem in linear partial differential equa-
tions (Yale University Press, New Haven)

Basseville, M., 1996, Information: entropies, divergences et moyennes, Technical Report,
1020, IRISA

Taneja, I.J., 2005, On mean divergences measures, Math. ST

Csiszar, I., 1991, Ann. Statist., 19, 2032

Burbea, J., & Rao, C.R., 1982, IEEE Trans. IT, 28, 489

Bregman, L.M., 1967, URSS Comput. Math. Math. Phys., 7, 200

Taupin, D., 1988, Probabilities, data reduction and error analysis in the physical sciences
(Les Editions de Physique)

Kullback, S., & Leibler, R.A., 1951, Annals Math. Statistics, 22, 79

Lanteri, H., Roche, M., Cuevas, O., & Aime, C., 2001, Sig. Proc., 54, 945

Lanteri, H., Roche, M., & Aime, C., 2002, Inv. Probl., 18, 1397

Lanteri, H., Roche, M., Gaucherel, P., & Aime, C., 2002, Sig. Proc., 82, 1481

Bertsekas, D., 1995, Non Linear Programming (Athena Scientific)

Daube-Witherspoon, M.E., & Muehlehnner, 1986, IEEE Trans. Medical Imaging, 5, 61

Richardson, W.H., 1972, J. Opt. Soc. Am., 1, 55

Lucy, L.B., 1974, AJ, 79, 745

De Pierro, A.R., 1985, IEEE Trans. Medical Imaging, 6, 124

Dempster, A.D., Laird, N.M., & Rubin, D.B., 1977, J. Royal Stat. Soc. B, 39, 1

Lanteri, H., Theys, C., Benvenuto, F., & Mary, D., 2009, Gretsi



324 New Concepts in Imaging: Optical and Statistical Models

Lanteri, H., Theys, C., Fevotte, C., & Richard, C., 2010, Eusipco

Biggs, D.S.C., & Andrews, M., 1997, Appl. Optics, 36, 1766

Nesterov, Yu., E., 1983, Soviet Math. Dokl, 27, 372

Beck, A., & Teboulle, M., 2010, in Convex Optimization in Signal Processing and Com-
munications, ed. D. Palomar & Y. Eldar (Cambridge University Press), 33


