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SCALED GRADIENT PROJECTION METHODS FOR
ASTRONOMICAL IMAGING

M. Bertero1, P. Boccacci1, M. Prato2 and L. Zanni2

Abstract. We describe recently proposed algorithms, denoted scaled
gradient projection (SGP) methods, which provide efficient and accu-
rate reconstructions of astronomical images. We restrict the presenta-
tion to the case of data affected by Poisson noise and of nonnegative
solutions; both maximum likelihood and Bayesian approaches are con-
sidered. Numerical results are presented for discussing the practical
behaviour of the SGP methods.

1 Introduction

Image deconvolution is an important tool for reducing the effects of noise and blur-
ring in astronomical imaging. In this paper we assume that blurring is described
by a space invariant point spread function (PSF) and that a model of the PSF
is available, accounting for both telescope diffraction and adaptive optics (AO)
correction of the atmospheric blur. Therefore we do not consider topics such as
space-variant deblurring or blind deconvolution.

Since the deconvolution problem is ill-posed, it should be formulated by using
all the information available on the image formation process: not only the PSF
is required but also a knowledge of the statistical properties of the noise affecting
the data. These properties are used, for instance, for reformulating deconvolution
as a maximum likelihood (ML) problem, which is also ill-posed in many instances
(even if, presumably, with a lower degree of ill-posedness). Then prior information
on the unknown astronomical target is required and this, if available, can be taken
into account by extending the ML approach to a Bayesian approach. In both cases
one reformulates deconvolution as a discrete variational problem and therefore the
use of methods derived from numerical optimization becomes essential.

As concerns noise modeling, a crucial point is that astronomical images are
typically detected by charged coupled device (CCD) cameras so that one can use,
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for instance, the accurate model described by Snyder et al. (1993). According to
this model, if we denote by yi the value of the image y detected at pixel i, then
(after correction for flat field, bad pixels etc.) yi is given by

yi = y
(obj)
i + y

(back)
i + y

(ron)
i , (1.1)

where y
(obj)
i is the number of photoelectrons due to radiation from the object,

y
(back)
i is the number of photoelectrons due to internal and external background,

dark current, etc., and y
(ron)
i is the contribution of the read-out noise (RON) due

to the amplifier. The first two terms are realizations of Poisson random variables
(r.v.) while the third is a realization of an additive Gaussian r.v.. Therefore
the noise affecting the data is a mixture of Poisson (due to photon counting) and
additive Gaussian noise, due to RON. However, a refined model taking into account
this particular structure of the noise does not provide significant improvement
with respect to a simplified model also proposed by Snyder et al. (1993) (for a
comparison see, for instance, Benvenuto et al. 2008, 2012). Indeed, Snyder et al.
propose that, after the substitution yi → yi + σ2, where σ2 is the variance of the
RON, the RON can be treated as the realization of a Poisson r.v. with mean and
variance being the same as σ2. In this paper we use this approximation, which
is quite accurate in the case of near infrared (NIR) observations, characterized by
a large background emission. In conclusion we assume that the data yi, shifted
by σ2, are realizations of suitable Poisson r.v.s.

In the framework of this model several iterative methods have been proposed
for solving the ML or the Bayes problem. These methods are, in general, easy
to implement but very slow: they require a large number of iterations, so that
the computational cost can become excessive for the present and future large
telescopes, able to acquire images of several mega-pixels so that the problem of
image deconvolution in Astronomy becomes a large scale one.

An interesting property of some of the proposed algorithms is that they are
first-order optimization methods using as a descent direction a suitable (diagonal)
scaling of the negative gradient of the objective function. As a consequence, using
these scalings, it is possible to apply a recently proposed approach denoted as
scaled gradient projection (SGP) method and described in its general form by
Bonettini et al. (2009). As shown by several numerical experiments this approach
can provide a considerable speed-up of the standard algorithms.

In this paper SGP is not only considered for single-image deconvolution, the
typical problem arising in the improvement of images provided by telescopes con-
sisting of a monolithic mirror, but also for multiple-image deconvolution, a prob-
lem arising when different images of the same astronomical target are available.
A significant application of this approach is the deconvolution of the images of
the future Fizeau interferometer of the Large Binocular Telescope (LBT) called
LINC-NIRVANA (Herbst et al. 2003).

LBT (http://www.lbto.org) is the world’s largest optical and infrared tele-
scope since it consists of two 8.4 m primary mirrors with the total light-gathering
power of a single 11.8 m telescope. The two mirrors have an elevation over an
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azimuth mounting and the elevation optical support structure moves on two large
C-shaped rings (see Fig. 1). They are mounted with a 14.4 m centre separation,
hence with an edge-to-edge distance of 22.8 m. This particular structure makes
possible Fizeau interferometry, with a maximum baseline of 22.8 m, corresponding
to a theoretical resolution of a 22.8 m mirror in the direction of the line joining
the two centres.

Fig. 1. A design view of LBT (upper panel), and a fish-eye image of the opposite side of

LBT inside the enclosure (lower panel), as it appears to the visitors of the observatory

(photo courtesy of W. Ruyopakam and the Large Binocular Telescope Observatory).

LINC-NIRVANA (LN for short) will operate as a true imager. Indeed, in the
Fizeau mode, the two beams from the primary mirrors are combined in a common
focal plane (not in the pupil plane as with essentially all the existing interfer-
ometers). LN is in an advanced realization phase by a consortium of German
and Italian institutions, leaded by the Max Planck Institute for Astronomy in
Heidelberg (http://www.mpia.de/LINC/). When completed, the instrument will
be mounted in the centre of the platform of LBT (clearly visible in the lower panel
of Fig. 1). It will be fully commissioned and available for scientific studies in 2014.
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Fig. 2. Simulated PSF of LINC-NIRVANA with SR = 70% (upper-left panel), and the

corresponding MTF (upper-right panel), both represented with reversed gray scale. The

fringes are orthogonal to the baseline. In the lower panels we show the cut of the PSF

along the baseline (left) and the cut of the MTF along the same direction (right).

In Figure 2 we show a simulated point spread function (PSF) with SR =
70%, together with the corresponding modular transfer function (MTF), i.e. the
modulus of the Fourier transform of the PSF. This PSF, as well as others used in
this paper, has been obtained with the code LOST (Arcidiacono et al. 2004). It
is monochromatic (λ = 2.2 μm, i.e. K band), and, as clearly appears from this
figure, it is the PSF of a 8.4 m telescope modulated by the interferometric fringes;
accordingly the central disc of the MTF corresponds to the band of a 8.4 m mirror
while the two side disks are replicas, due to interferometry, with a weaker intensity
than the central one. These disks contain the precious additional information on
the target due to interferometry.

As follows from this analysis, LN images will be characterized by an anisotropic
resolution: that of a 22.8 m telescope in the direction of the baseline, and that
of a 8.4 m in the orthogonal direction. Therefore, in order to get the maximum
resolution in all directions, it will be necessary to acquire different images of the
same astronomical target with different orientations of the baseline and to com-
bine these images into a unique high-resolution image by means of suitable image
reconstruction methods. In other words LN will routinely require multiple-image
deconvolution.

The paper is organized as follows. In Section 2 we outline the mathematical
model based on the approximation of the RON mentioned above and we describe
the main algorithms introduced for solving the ML and the Bayesian problems both
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for single and multiple-image deconvolution. Moreover we recall an approach, pro-
posed in Bertero & Boccacci (2005), for boundary effect correction. In Section 3
we describe the algorithm SGP in the particular case of the nonnegativity con-
straint and the optimization of its parameters. In Section 4 we demonstrate its
efficiency by several numerical experiments and finally in Section 5 we derive some
conclusions.

2 Mathematical modeling

As outlined in the Introduction we assume that the value yi of an astronomical
image y detected at pixel i is the realization of a Poisson r.v. Yi with unknown
expected value λi. A further assumption is that the r.v.s. associated with differ-
ent pixels are statistically independent. As a consequence their joint probability
distribution is given by

PY (y|λ) =
∏
i∈S

e−λiλyi

i

yi!
, (2.1)

the data being assumed to be integer numbers and S being the set of the index
values.

In the case of a linear model for image formation, with the imaging system
described by a space-invariant PSF, the unknown expected value is given by

λi = (Hx)i + bi, Hx = K ∗ x, (2.2)

where: x is the unknown astronomical target; b the background emission, including
the σ2 term due to the RON; H the imaging matrix and K the PSF of the system
satisfying the conditions

Ki ≥ 0,
∑
i∈S

Ki = 1. (2.3)

Assuming that b and K are known, the image restoration problem requires the
development of methods for providing an estimate of x, given y.

2.1 Maximum likelihood approach

In the ML approach, given the detected image y, as well as b and K, one introduces
the likelihood function, which is the function of x defined by

Ly(x) = PY (y|Hx + b) (2.4)

and obtained by inserting the image y and the model (2.2) in Equation (2.1).
Then, a ML estimate of the unknown object is any image x∗ which maximizes the
likelihood function. However, since the likelihood is the product of a large number
of functions, it is more convenient to take the negative logarithm of the likelihood
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and minimize the resulting function. It is easy to see that, by rearranging terms
independent of x, the negative logarithm of Ly(x) is given by

f0(x; y) =
∑
i∈S

{
yiln

yi

(Hx + b)i
+ (Hx + b)i − yi

}
, (2.5)

which is the so-called generalized Kullback-Leibler (KL) divergence of the computed
data Hx + b from the detected data y. This function is nonnegative and is zero
iff Hx + b = y; it is also convex and coercive, i.e. f0(x; y)→ +∞ if ||x||2 → +∞.
The KL-divergence is not a metric distance, because it is not symmetric in the two
terms and does not satisfy the triangle inequality. However it can be taken as a
measure of the discrepancy between Hx+b and y; it will be called the data fidelity
function. The properties of f0(x; y) imply the existence of global minima of this
function on the nonnegative orthant and therefore the existence of nonnegative
ML estimates of the unknown. If all data are strictly positive and the imaging
matrix is nonsingular, then f0(x; y) is strictly convex, a sufficient condition for the
uniqueness of the solution.

As shown in Barrett & Meyers (2003), the nonnegative minimizers of f0(x; y)
are sparse objects, i.e. they consist of bright spots over a black background (some-
times are called star-night solutions). Therefore they can be reliable solutions in
the case of simple astronomical objects, such as binaries or open star clusters, but
they are not in the case of more complex objects, such as nebulae, galaxies etc..

The standard algorithm for the minimization of f0(x; y) is the so-called
Richardson-Lucy (RL) algorithm (Richardson 1972; Lucy 1974), defined by

x(k+1) = x(k) ·HT y

Hx(k) + b
, (2.6)

where the · denotes Hadamard product of two vectors and similarly the fraction
symbol indicates component-wise division of two vectors. In the case b = 0 con-
vergence of the iteration to the minimizers of f0(x; y) has been proved, but it
is important to remark that the algorithm has also well-known “regularization”
properties: in the case of complex objects sensible solutions can be obtained by
a suitable early stopping of the iterations, even if this approach may not pro-
vide satisfactory results in some specific cases, for instance in the case of objects
with sharp structures. Then a more refined regularization can be obtained by the
use of prior information on the solution in a Bayesian framework (see, the next
subsection).

An extension of the previous approach is required when different images of
the same object are available. This problem, as discussed in the Introduction, is
fundamental for the future Fizeau interferometer of LBT or for the “co-adding”
method of images with different PSFs proposed by Lucy & Hook (1992).

Let p be the number of detected images y(j), j=1,..,p, with corresponding
PSFs K(j), all normalized to unit volume, H(j)x = K(j) ∗ x, and backgrounds
b(j) (including the term σ2 due to RON). It is quite natural to assume that the p
images are statistically independent, so that the likelihood of the problem is the
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product of the likelihoods associated to the different images. If we assume again
Poisson statistics, and we take the negative logarithm of the likelihood, then the
ML estimates are the minimizers of a data-fidelity function which is the sum of
KL divergences, one for each image, i.e.

f0(x; y) =
p∑

j=1

∑
i∈S

{
y
(j)
i ln

y
(j)
i

(H(j)x + b(j))i
+ (H(j)x + b(j))i − y

(j)
i

}
. (2.7)

If we apply the standard expectation maximization method (Shepp & Vardi 1982)
to this problem, we obtain the iterative algorithm

x(k+1) =
1
p
x(k) ·

p∑
j=1

(H(j))T y(j)

H(j)x(k) + b(j)
, (2.8)

which we call the multiple-image RL method (multiple RL, for short).
For the reconstruction of LN images an acceleration of this algorithm is pro-

posed in Bertero & Boccacci (2000) by exploiting an analogy between the images
of the interferometer and the projections in tomography. In this approach called
OSEM (ordered subset expectation maximization; Hudson & Larkin 1994), the
sum over the p images in Equation (2.8) is replaced by a cycle over the same
images. To avoid oscillations of the reconstructions within the cycle, a prelimi-
nary step is the normalization of the different images to the same flux, if different
integration times are used in the acquisition process. The method OSEM is sum-
marized in Algorithm 1.

Algorithm 1 Ordered subset expectation maximization (OSEM) method

Choose the starting point x(0) > 0.

For k = 0, 1, 2, ... do the following steps:

Step 1. Set h(0) = x(k);

Step 2. For j = 1, ..., p compute

h(j) = h(j−1) · (H(j))T y(j)

H(j)h(j−1) + b(j)
; (2.9)

Step 3. Set x(k+1) = h(p).

End

As follows from practice and theoretical remarks, this approach reduces the
number of iterations by a factor p. However, the computational cost of one multiple
RL iteration is lower than that of one OSEM iteration: we need 3p + 1 FFTs in
the first case and 4p FFTs in the second. In conclusion, the increase in efficiency
provided by OSEM is roughly given by (3p + 1)/4. When p = 3 (the number of
images provided by the interferometer will presumably be small), the efficiency
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is higher by a factor of 2.5, and a factor of 4.7 when p = 6. These results must
be taken into account when evaluating the efficiency of SGP with respect to that
of multiple RL. We can add that the convergence of SGP is proved while that of
OSEM is not, even if it has always been verified in our numerical experiments.

2.2 Bayesian approach

As already remarked, the regularization of the ML estimates obtained by an early
stopping of the previous algorithms may not be satisfactory in some cases. A
more general kind of regularization can be obtained with the so-called Bayesian
approach. In this approach one assumes that the unknown object is also a real-
ization of a suitable r.v. X whose probability distribution expresses information
available on its properties, such as smoothness, sharp details etc..

A frequently used probability distribution has the following form, which is
typical in statistical mechanics

PX(x) =
1
Z

e−β f1(x), (2.10)

where Z (also called the partition function) is a normalization constant, β is a
hyper-parameter, playing the role of a regularization parameter in our applica-
tion, and f1(x) is a potential function characterizing the known properties of the
unknown object, called in the following regularization function or also regularizer.
PX(x) is called the prior.

If the probability distribution PY (y|Hx + b), obtained by combining
Equations (2.1) and (2.2), is interpreted as the conditional probability of Y for
a given value of X , then, from Bayes formulas we obtain that the conditional
probability of X for a given value of Y is given by

PX(x|y) =
PY (y|Hx + b)PX(x)

PY (y)
, (2.11)

where PY (y) is the marginal probability distribution of Y .
If in this equation we insert the detected image y, we obtain a function of x

which is called the posterior probability of x and is essentially the product of the
likelihood and the prior (the value of the marginal distribution of Y computed in
y is a constant which can be neglected). The maximizers of this function are the
maximum a posteriori (MAP) estimates of the unknown object. By taking again
the negative log of this function we find that they are the nonnegative minimizers
of the function

fβ(x; y) = f0(x; y) + βf1(x), (2.12)

where the second term is the negative log of the prior. If the function f1(x) is
convex and nonnegative, then fβ(x; y) is also convex and nonnegative; moreover it
is also coercive, thanks to the coercivity of f0(x; y), so that MAP estimates of the
unknown object exist. Given the regularizer, a crucial point in this approach is
the choice of the regularization parameter β. This point will be briefly discussed
in the following.
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For our purposes an interesting algorithm for the minimization of fβ(x; y) is
the so-called split-gradient method (SGM) proposed by Lantéri et al. (2002), which
consists in a simple modification of the RL algorithm. If f1(x) is differentiable and
U1(x), V1(x) is a pair of nonnegative functions such that

−∇xf1(x) = U1(x) − V1(x), (2.13)

then the algorithm is as follows

x(k+1) =
x(k)

1̂ + β V1(x(k))
·
{

HT y

Hx(k) + b
+ β U1(x(k))

}
, (2.14)

where 1̂ = (1, . . . , 1)T . The choice of the pair U1(x), V1(x) is not unique but, for
each one of the standard regularizers, one can find a quite natural choice (Lantéri
et al. 2002). As concerns the extension to the case of multiple image deconvolution
(Bertero et al. 2011), the updating rule of SGM becomes

x(k+1) =
x(k)

p1̂ + βV1(x(k))
·

⎧⎨⎩
p∑

j=1

(H(j))T y(j)

H(j)x(k) + b(j)
+ βU1(x(k))

⎫⎬⎭ , (2.15)

while the OSEM algorithm, with regularization, is given by Algorithm 1 where
Equation (2.9) is replaced by

h(j) =
h(j−1)

1̂ + β
p V1(h(j−1))

·
{

(H(j))T y(j)

H(j)h(j−1) + b(j)
+

β

p
U1(h(j−1))

}
. (2.16)

2.3 Boundary effect corrections

If the target x is not completely contained in the image domain, then the previous
deconvolution methods produce annoying boundary artifacts. It is not the purpose
of this paper to discuss the different methods for solving this problem. We focus
on an approach proposed in Bertero & Boccacci (2005) for single-image and in
Anconelli et al. (2006) for multiple-image deconvolution. Here we present the
approach in the case of multiple images (single image corresponds to p = 1).

The idea is to reconstruct the object x over a domain broader than that of
the detected images and to merge, by zero padding, the arrays of the images and
the object into arrays of dimensions that enable their Fourier transform to be
computed effectively by means of FFT. We denote by S̄ the set of values of the
index labeling the pixels of the broader arrays containing S, and by R that of
the object array contributing to S, so that S ⊂ R ⊂ S̄. It is obvious that also
the PSFs must be defined over S̄ and that this can be done in different ways,
depending on the specific problem one is considering. We point out that they
must be normalized to unit volume over S̄. We also note that R corresponds to
the part of the object contributing to the detected images and that it depends on
the extent of the PSFs. The reconstruction of x outside S is unreliable in most
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cases, but its reconstruction inside S is practically free of boundary artifacts, as
shown in the papers cited above and in the experiments of Section 4.

In order to estimate the reconstruction domain R we can proceed as follows.
Let MS be the characteristic function (mask) of S in S̄, i.e. the array which is
1 inside S and 0 outside; moreover, let us introduce the following arrays, defined
over S̄, which appear in the computation of the gradient of f0(x; y) as defined
below

γ(j) = K
(j)
− ∗MS , γ =

p∑
j=1

γ(j), (2.17)

where (K(j)
− )i = (K(j))−i. These arrays are essentially the images of MS in S̄ and

are computable by FFT. Their extent outside S (they can be either very small or
zero in pixels of S̄ outside S) depends on the extent of the PSF and therefore they
can be used for defining the reconstruction domain R. Given a thresholding value
ε, we define R as follows

R = {l ∈ S̄ | γ(j)
l ≥ ε ; j = 1, .., p}; (2.18)

Next, if MR is the characteristic function of R, we introduce the following matrices
H(j) and (H(j))T

H(j)x = MS ·K(j) ∗ (MR · x), (2.19)

(H(j))T h = MR ·K(j)
− ∗ (MS · h), (2.20)

where, in the second equation, h denotes a generic array defined over S̄. Again,
both matrices can be computed by means of FFT. We point out that, in the case
of a regularization function containing the discrete gradient of x, it could be con-
venient to slightly modify the definition of MR: not use exactly the characteristic
function of R, but an array which is 1 over R and tends smoothly to 0 outside
R (obtained, for instance, by convolving the characteristic function of R with a
suitable Gaussian). In this way one can avoid discontinuities at the boundary of
R in S̄.

With the previous definitions, the data fidelity function is given again by
Equation (2.7), with S replaced by S̄ and the matrices H(j) defined as in the previ-
ous equation. Then the multiple RL algorithm, with regularization and boundary
effect correction, is given by

x(k+1) =
MR · x(k)

γ + βV1(x(k))
·

⎧⎨⎩
p∑

j=1

(H(j))T y(j)

H(j)x(k) + b(j)
+ βU1(x(k))

⎫⎬⎭ , (2.21)

the quotient being zero in the pixels outside R. Similarly, the OSEM algorithm,
with regularization and boundary effect correction, is given by Algorithm 1 where
Equation (2.9) is replaced by

h(j) =
MR · h(j−1)

γ(j) + β
p V1(h(j−1))

·
{

(H(j))T y(j)

H(j)h(j−1) + b(j)
+

β

p
U1(h(j−1))

}
. (2.22)
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We stress again that the convergence of OSEM is not proved in the case of noisy
data but that it has been always verified numerically in our applications to astro-
nomical imaging.

3 The scaled gradient projection method

Let us consider, for generality, the case of multiple images with boundary effect
correction and regularization. It is easy to verify that the gradient of fβ(x; y),
with x restricted to R, is given by

∇xfβ(x; y) = MR ·

⎛⎝γ −
p∑

j=1

(H(j))T y(j)

H(j)x + b(j)

⎞⎠ + β∇f1(x), (3.1)

where the definitions and notations introduced in the previous sections are used.
If x is an admissible image, x ≥ 0, then it is also easy to verify that, for each
α ∈ (0, 1] the image

xα = x− α
x

γ + β V1(x)
∇xfβ(x; y), (3.2)

where V1(x) is the array related to the gradient of f1(x) (see Eq. (2.13)), is also
an admissible image. If we do the substitutions xα = x(k+1), x = x(k) and α = 1,
we re-obtain the algorithm of Equation (2.21).

Since all the algorithms in the previous section can be obtained as particular
cases of this one, we can conclude that all these algorithms are scaled gradient
method, with a descent direction which is also feasible just thanks to the scaling
of the gradient which has been introduced. This property may suggest that all the
scalings previously considered may be very useful for designing efficient first order
methods and this is just what is obtained thanks to the SGP method proposed in
Bonettini et al. (2009).

3.1 The algorithm

In many astronomical applications both ML and Bayes problems are particular
cases of the following general convex optimization problem

min f(x), sub.to x ≥ 0, (3.3)

where f is a continuously differentiable, nonnegative, convex and coercive function.
In the following we denote as P+ the projection onto the nonnegative orthant, i.e.
the operator setting to zero the negative component of a vector. Moreover, we
introduce the set D of the diagonal positive definite matrices, whose diagonal
elements have values between L1 and L2, for given thresholds 0 < L1 < L2. Then
the general SGP can be stated as in Algorithm 2.

In practice, at iteration k, given the step-length αk and the scaling matrix Dk ∈
D, a descent direction d(k) is obtained as difference between the projection of the
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Algorithm 2 Scaled gradient projection (SGP) method

Choose the starting point x(0) ≥ 0 and set the parameters η, θ ∈ (0, 1), 0 < αmin <
αmax.

For k = 0, 1, 2, ... do the following steps:

Step 1. Choose the parameter αk ∈ [αmin, αmax] and the scaling matrix
Dk ∈ D;

Step 2. Projection:
z(k) = P+(x(k) − αkDk∇f(x(k)));

Step 3. Descent direction: d(k) = z(k) − x(k);

Step 4. Set λk = 1;

Step 5. Backtracking loop:
let fnew = f(x(k) + λkd(k));
If

fnew ≤ f(x(k)) + ηλk∇f(x(k))T d(k)

then
go to step 6;

Else
set λk = θλk and go to step 5.

Endif

Step 6. Set x(k+1) = x(k) + λkd(k).

End

vector x(k) − αkDk∇f(x(k)) and the current iteration x(k). The descent direction
is then used to define the new approximation x(k+1) = x(k) + λkd(k), where the
line-search parameter λk is defined by a standard Armijo line-search procedure
that ensures the monotone reduction of the objective function at each iteration.
The global convergence can be obtained by following Birgin et al. (2000, 2003)
and Bonettini et al. (2009), where the more general case based on non-monotone
line-search procedures is also considered. We emphasize that any choice of the
step-length αk ∈ [αmin, αmax] and the scaling matrix Dk ∈ D are allowed; this
freedom of choice can then be fruitfully exploited for introducing performance
improvements, as discussed in the next section.

3.2 Scaling matrix and step-length

The choice of the scaling matrix has to be addressed with the goal of improving
the convergence rate of the image reconstruction process while avoiding to increase
excessively the computational cost of the single iteration. In the case of twice
continuously differentiable objective function, a possible choice is to use a diagonal
scaling matrix whose nontrivial elements approximate the diagonal entries of the
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inverse of the Hessian matrix ∇2f(x), for example by choosing

(Dk)ii = min
{

L2, max
{

L1,
((
∇2f(x(k))

)
ii

)−1
}}

. (3.4)

However, since the computation of the diagonal entries of the Hessian might rep-
resent an expensive task, the commonly used choice for the scaling matrix is the
one suggested by the RL algorithm and its regularized versions, namely

Dk = diag
(

min
{

L2, max
{

L1,
x(k)

γ + ηV1(x(k))

}})
, (3.5)

where only the indexes in R are considered in the case of boundary effect correc-
tion. In several applications of SGP to image deblurring the above scaling matrix
has been shown to be very successful in accelerating the approximation of suited
reconstructions, in comparison with gradient projection based approaches that
avoid the use of scaling matrices (Bonettini et al. 2009, 2012).

As concerns the step-length parameter, an effective selection strategy is ob-
tained by adapting to the context of the scaled gradient projection methods the two
Barzilai & Borwein (1988) rules (hereafter denoted by BB), which are widely used
in standard non-scaled gradient methods for unconstrained minimization prob-
lems. For the non-scaled case, the recent literature suggests effective alternation
strategies of two BB step-length updating rules, derived by a careful analysis
of their properties in the case of unconstrained minimization of quadratic func-
tions. In particular, their ability in approximating the eigenvalues of the objective
Hessian is exploited to design adaptive alternation strategies able to improve signif-
icantly the convergence rate of the gradient scheme (Zhou et al. 2006; Frassoldati
et al. 2008). Numerical evidence is available that confirms the efficiency of these
alternated BB rules also in case of nonlinear constrained minimization problems
(Serafini et al. 2005; Loris et al. 2009).

When the scaled direction Dk∇f(x(k)) is exploited within a step of the form
x(k) − αkDk∇f(x(k)), the standard BB step-length rules can be generalized as
follows:

α
(BB1)
k =

(s(k−1))T D−1
k D−1

k s(k−1)

(s(k−1))T D−1
k t(k−1)

, (3.6)

α
(BB2)
k =

(s(k−1))T Dkt(k−1)

(t(k−1))T DkDkt(k−1)
, (3.7)

where s(k−1)=x(k)−x(k−1) and t(k−1)=∇f(x(k))−∇f(x(k−1)); when Dk = I the
above formulas lead to the standard BB rules.

In SGP, the values produced by these rules are constrained into the interval
[αmin, αmax] in the following way:

if (s(k−1))T D−1
k t(k−1) ≤ 0 then

α
(1)
k = min {10 · αk−1, αmax};

else
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α
(1)
k = min

{
αmax, max

{
αmin, α

(BB1)
k

}}
;

endif
if (s(k−1))T Dkt(k−1) ≤ 0 then

α
(2)
k = min {10 · αk−1, αmax};

else
α

(2)
k = min

{
αmax, max

{
αmin, α

(BB2)
k

}}
;

endif

The criterion adopted in SGP for alternating between the above step-lengths is
derived from that proposed in Frassoldati et al. (2008) and can be stated as
follows:

if α
(2)
k /α

(1)
k ≤ τk then

αk = min
j=max{1,k+1−Mα},...,k

α
(2)
j ; (3.8)

τk+1 = 0.9 · τk;
else
αk = α

(1)
k ; τk+1 = 1.1 · τk;

endif

where Mα is a prefixed positive integer and τ1 ∈ (0, 1). In contrast to the criterion
proposed in Frassoldati et al. (2008), that is thought for the non-scaled case
(Dk = I) and uses a constant threshold τk = τ ∈ (0, 1) in the switching condition,
here a variable threshold is exploited with the aim of avoiding the selection of
the same rule for a too large number of iterations. A wide computational study
suggests that this alternation criterion is more suitable in terms of convergence
rate than the strategy proposed by Zhou et al. (2006) and the use of a single BB
rule (Bonettini et al. 2009; Favati et al. 2010; Zanella et al. 2009). Furthermore,
in our experience, the use of the BB values provided by Equation (3.8) (that are
generally lower than those provided by α

(1)
k ) in the first iterations slightly improves

the reconstruction accuracy and, consequently, in the proposed SGP version we
start the step-length alternation only after the first 20 iterations.

3.3 Choice of the parameters and implementation

Even if the number of SGP parameters is certainly higher than those of the RL and
OSEM approaches, the huge amount of tests carried out in several applications
has led to an optimization of these values, which allows the user to have at his
disposal a robust approach without the need of an expensive problem-dependent
parameter tuning. In the following we provide some comments on each of these
parameters:

• x(0): although any array can be used as starting point of the algorithm,
the two commonly used images are either the detected one (or one of the
detected images in the case of multiple deconvolution) or a constant image
with pixel values equal to the background-subtracted flux (or mean flux in
the case of multiple deconvolution) of the noisy data divided by the number
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of pixels. If the boundary effect correction is considered, only the pixels in
the object array R become equal to this constant, while the remaining values
of S̄ are set to zero. Our experience showed no clear preference of the former
choice with respect to the latter, that is typically used in the standard RL
approach;

• η, θ: the sufficient decrease parameter η and the step-reduction parameter θ
control, respectively, the severity of the objective function decrease condition
and the number of backtracking reductions. The parameter η has been set
to 10−4 as usually done in literature (see, for example, Birgin et al. 2000),
while the value θ = 0.4 resulted to be a good compromise to get a sufficiently
large step size calculated with a low number of reductions;

• αmin, αmax, α0: the bounds αmin, αmax of the step-length parameter αk are
safeguard values that have to be considered for the algorithm to ensure the
theoretical convergence. Usually, a very large range (αmin, αmax) is exploited
in combination with BB-like step-length selections (Birgin et al. 2000, set
such values to 10−30 and 1030); we found that the interval (10−5, 105) is
suited both for working with the rules (3.6)-(3.7) and for avoiding extreme
step-length values. As far as the starting parameter α0 concerns, the value
1.3 has been chosen to have an initial step slightly longer than the RL one;

• initial value for τk: as previously observed, the switching condition between
the step-length (3.8) and the value α

(1)
k works after the first 20 iterations

and we choose the value 0.5 as first value for the switching parameter τk. In
our experience, in the considered imaging applications, the values provided
by Equation (3.7) are generally lower than those given by (3.6) and the
starting value chosen for τk seems well suited to activate the alternation
between the two step-length rules (remember that in the non-scaled case, if
(s(k−1))T t(k−1) > 0, the inequality α

(BB2)
k ≤ α

(BB1)
k holds).

• Mα: in case of non-scaled gradient schemes for unconstrained quadratic min-
imization, the use of the minimum of the step-lengths α

(BB2)
k−j , j = 0, . . . , Mα

increased the ability of the first BB rule to approximate, in the subsequent
iterations, the inverse of the Hessian’s smallest eigenvalues, with interest-
ing convergence rate improvements (Frassoldati et al. 2008). In Bonettini
et al. (2009), by using the setting Mα = 3, the importance of this trick is
numerically confirmed also on more general minimization problems and in
case of scaled gradient projection methods; for this reason we adopted the
same setting also for our SGP version.

• L1, L2: while in the original paper of Bonettini et al. (2009) the choice
of the bounds (L1, L2) for the scaling matrices was a couple of fixed values
(10−10, 1010), independent of the data, we prefer to make automatically these
bounds suitable for images of any scale. In details, one step of the RL
method is performed and the parameters (L1, L2) are tuned according to
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the min/max positive values ymin/ymax of the resulting image; moreover, for
avoiding too close bounds, the following rule is implemented

if ymax/ymin < 50 then
L1 = ymin/10;
L2 = ymax · 10;

else
L1 = ymin;
L2 = ymax;

endif

The above parameter settings are at the basis of the SGP versions currently avail-
able for ML deconvolution of astronomical images, which we briefly describe.

• IDL implementation: an Interactive Data Language (IDL) package for the
single and multiple deconvolution of 2D images corrupted by Poisson noise,
with the optional inclusion of the boundary effect correction.

• IDL-GPU implementation: an extended version of the above IDL implemen-
tation able to exploit the resources available on Graphics Processing Units
(GPUs). This SGP version is obtained by means of the CUDA
(Compute Unified Device Architecture) technology, developed by NVIDIA
for programming their GPUs. The CUDA framework is available within an
IDL implementation through the GPUlib, a software library developed by
Tech-X Corporation, that enables GPU-accelerated computation.

• Matlab implementation: a Matlab package for the deconvolution of 2D and
3D images through the minimization of the function (2.5) and the early
stopping of the iterations.

These implementations and the relative documentation can be downloaded
from the URL http://www.unife.it/prin/software. A complete C++ and
C++/CUDA library collecting all the described SGP versions is in progress and
will be soon available by request.

4 Numerical experiments

The application of SGP to ML problems described in Section 3 is presented, dis-
cussed and illustrated with several numerical examples in Prato et al. (2012).
In this section we show the SGP behaviour by discussing a few of the numerical
experiments presented in Prato et al. (2012) as well as a numerical experiment of
regularized deconvolution described in Staglianò et al. (2011).

In the case of methods for ML problems a crucial point is the choice of the
number of iterations, i.e. the introduction of sensible stopping rules providing
sensible solutions. On the other hand, in the case of regularization methods, the
crucial point is the choice of the regularization parameter. We first discuss the
stopping of the iterative methods for ML reconstructions.
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In the case of the reconstruction of stellar objects such as binaries, clusters
etc., SGP can be pushed to convergence; in other words, iteration can be stopped
when the following condition is satisfied

|f0(x(k); y)− f0(x(k−1); y)| ≤ tol f0(x(k−1); y), (4.1)

where tol is a parameter selected by the user (in most cases we use tol = 10−7,
but a larger value can be selected to reduce the number of iterations if a poorer
accuracy of the result is sufficient). We remark that the application of this criterion
does not require an additional cost because f0(x(k); y) is already computed within
the algorithm.

In the case of early stopping the choice of the stopping rule is a difficult task.
In numerical simulations the reference object is known, let us denote it as x̃, and
therefore at each iteration one can compute (with a small additional cost) some
“distance” between x̃ and x(k). A frequently used indicator is the relative r.m.s.
error defined by

ρ(k) =
||x(k) − x̃||2
||x̃||2

, (4.2)

or other indicators in terms of �1-norm, KL divergence etc.. Iterations can be
stopped when ρ(k) reaches a minimum value, thus defining a reconstruction which
is “optimal” according to this criterion.

Obviously such a strategy can not be applied in the case of real data. In the
vein of a discrepancy principle used for Tikhonov regularization, one can introduce
the following quantity, which must be computed at each iteration and can be called
a “discrepancy function”

D(k)
y =

1
#S

∥∥∥∥∥Hx(k) + b− y√
Hx(k) + b

∥∥∥∥∥
2

. (4.3)

It is derived from Bardsley & Goldes (2009) while in Staglianò et al. (2011) it
is shown that this quantity is a decreasing function of k; moreover, in the latter
paper, it is proposed, on the basis of statistical considerations, that iterations could
be stopped when D

(k)
y ≤ 1. Another criterion, also based on a statistical analysis,

is proposed in Bertero et al. (2010). In this case the “discrepancy function” is
defined by

D(k)
y =

2
#S

f0(x(k); y), (4.4)

and its computation does not require any additional cost. It is proved that it is
a decreasing function of k and again iterations can be stopped when D

(k)
y ≤ 1.

Examples of the application of this criterion are given in Bertero et al. (2010).
In the case of regularized solutions, for a given value of the regularization

parameter, the iterations must be pushed to convergence using, for instance, a
criterion similar to (4.1), with f0(x(k); y) replaced by fβ(x(k); y). The problem
is to select a value of β. Again, one must use different strategies in the case of
simulated and real data.
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In the first case, if we denote as x∗
β the minimizer of fβ(x; y) (in practice, its

approximation computed by means of an iterative method), then one can introduce
again a relative r.m.s. error using a “distance” between x∗

β and x̃, for instance in
terms of the �2-norm,

ρ(β) =
||x∗

β − x̃||2
||x̃||2

, (4.5)

(or another indicator) and searching for the value of β minimizing this quantity.
This approach obviously requires the computation of x∗

β for several values of β
and can be computationally expensive.

In the case of real data one can use the discrepancy function introduced by
Bardsley & Goldes (2009)

Dy(β) =
1

#S

∥∥∥∥∥∥Hx∗
β + b − y√
Hx∗

β + b

∥∥∥∥∥∥
2

, (4.6)

or that introduced by Bertero et al. (2010)

Dy(β) =
2

#S
f0(x∗

β ; y). (4.7)

In both cases one must search for the value of β satisfying the equation D(β) = 1.
A secant-like method can be used for solving this equation; if a tolerance 10−3 is
used, in general only 4-5 iterations are required. This approach can be useful also
in the case of simulations because the value of β minimizing the error (4.5) can be
searched in a neighborhood of the value provided by the discrepancy principle.

4.1 Acceleration of the RL method

In this section we show the effectiveness of SGP with respect to the RL and OSEM
approaches, highlighting the speedups achievable thanks to both the algorithmic
acceleration provided by SGP and the parallel implementation of the codes on
GPU. We consider 256× 256 HST images of the planetary nebula NGC 7027 and
the galaxy NGC 6946, with two different integrated magnitudes (m) of 10 and
15, not corresponding to the effective magnitudes of these objects but introduced
for obtaining simulated images with different noise levels. Such images have been
convolved with an ideal PSF, simulated assuming a telescope of diameter 8.25 m,
a wavelength of 2.2 μm, and a pixel size of 50 mas. A constant background
term of about 13.5 mag arcsec−2, corresponding to observations in K-band, is
added and the resulting images are perturbed with Poisson noise and additive
Gaussian noise with σ = 10 e−/px. Original objects and the corresponding blurred
and noisy images are shown in Figure 3. As suggested in Snyder et al. (1994),
compensation for RON is obtained in the deconvolution algorithms by adding the
constant σ2 = 100 to the images and the background. We obtained test problems
of larger size (up to 2048×2048) by means of a Fourier-based rebinning, preserving



M. Bertero et al.: Scaled Gradient Projection Methods 343

the same background and the same noise level. The results are reported in Tables 1
and 2, where we highlight both the speedup observed between GPU and serial
implementations (labeled “Par”) and the one provided by the use of SGP instead
of RL (labeled “Alg”).

Fig. 3. Original images (top panels) and blurred noisy images with m = 10 (middle

panels) and m = 15 (bottom panels).

As concerns the multiple-image deconvolution problem, we test the efficiency
of multiple RL, OSEM, and SGP (applied to multiple RL), by means of synthetic
images of LN. In particular, we simulate a model of an open star cluster based on
an image of the Pleiades, by selecting the nine brightest stars characterized by the
following name, position and magnitude.
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Table 1. Relative r.m.s. errors, computational times, and speedups obtained by the

accelerating features of SGP with respect to RL (“Alg”) and by the GPU implementations

(“Par”), for the nebula NGC 7027 with different image sizes. Iterations are stopped at a

minimum relative r.m.s. error in the serial algorithms.

m = 10

Algorithm Size Err Sec SpUp SpUp
(Par) (Alg)

2562 0.051 783.9 - -
RL 5122 0.051 4527 - -

It = 10000∗ 10242 0.051 17610 - -
20482 0.051 80026 - -
2562 0.051 35.63 22.0 -

RL CUDA 5122 0.051 69.77 64.9 -
It = 10000∗ 10242 0.051 149.5 118 -

20482 0.051 469.1 171 -
2562 0.052 26.14 - 30.0

SGP 5122 0.051 143.6 - 31.5
It = 272 10242 0.051 554.0 - 31.8

20482 0.051 2493 - 32.1
2562 0.052 1.797 14.5 19.8

SGP CUDA 5122 0.052 3.469 41.4 20.1
It = 272 10242 0.052 8.016 69.1 18.7

20482 0.052 25.66 97.2 18.3
m = 15

Algorithm Size Err Sec SpUp SpUp
(Par) (Alg)

2562 0.068 48.27 - -
RL 5122 0.064 278.7 - -

It = 612 10242 0.062 1068 - -
20482 0.062 4897 - -
2562 0.068 2.219 21.8 -

RL CUDA 5122 0.064 4.109 67.8 -
It = 612 10242 0.062 9.250 115 -

20482 0.062 29.13 168 -
2562 0.068 3.016 - 16.0

SGP 5122 0.064 16.95 - 16.4
It = 31 10242 0.062 65.22 - 16.4

20482 0.061 290.8 - 16.8
2562 0.068 0.218 13.8 10.2

SGP CUDA 5122 0.064 0.421 40.3 9.76
It = 31 10242 0.062 1.063 61.4 8.70

20482 0.061 3.406 85.4 8.55
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Table 2. Relative r.m.s. errors, computational times, and speedups obtained by the

accelerating features of SGP with respect to RL (“Alg”) and by the GPU implementations

(“Par”), for the galaxy NGC 6946 with different image sizes. Iterations are stopped at a

minimum relative r.m.s. error in the serial algorithms.

m = 10

Algorithm Size Err Sec SpUp SpUp
(Par) (Alg)

2562 0.293 786.0 - -
RL 5122 0.293 4545 - -

It = 10000∗ 10242 0.293 17402 - -
20482 0.293 80022 - -
2562 0.293 36.64 21.5 -

RL CUDA 5122 0.293 67.94 66.9 -
It = 10000∗ 10242 0.293 146.7 119 -

20482 0.293 463.9 172 -
2562 0.292 88.72 - 8.86

SGP 5122 0.291 484.3 - 9.38
It = 928 10242 0.291 1854 - 9.19

20482 0.291 8386 - 9.54
2562 0.293 7.219 12.3 5.08

SGP CUDA 5122 0.293 11.14 43.5 6.10
It = 928 10242 0.293 25.86 71.7 5.67

20482 0.293 81.02 104 5.73
m = 15

Algorithm Size Err Sec SpUp SpUp
(Par) (Alg)

2562 0.311 114.9 - -
RL 5122 0.307 644.3 - -

It = 1461 10242 0.306 2574 - -
20482 0.306 11689 - -
2562 0.311 5.375 21.4 -

RL CUDA 5122 0.307 9.656 66.7 -
It = 1461 10242 0.306 22.41 115 -

20482 0.306 68.44 171 -
2562 0.311 3.672 - 31.3

SGP 5122 0.308 20.36 - 31.6
It = 38 10242 0.307 78.20 - 32.9

20482 0.306 354.0 - 33.0
2562 0.311 0.266 13.8 20.2

SGP CUDA 5122 0.307 0.531 38.3 18.2
It = 38 10242 0.307 1.344 58.2 16.7

20482 0.306 4.188 84.5 16.3
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Star Name X Y m
ALCYONE 228 246 12.86

ATLAS 156 237 13.62
ELECTRA 340 247 13.70

MAIA 299 295 13.86
MEROPE 277 216 14.17
TAYGETA 326 313 14.29
PLEIONE 155 253 15.09
CELAENO 343 280 15.44
ASTEROPE 296 330 15.64

The coordinate values are deduced from the picture found in the Wikipedia
page (http://en.wikipedia.org/wiki/Pleiades), resized to a 256× 256 pixels
image, and immersed in a 512 × 512 pixels image. In this way we generated a
relatively compact cluster in the center of the image. These objects are convolved
with three PSFs corresponding to three equispaced orientations of the baseline,
0◦, 60◦, and 120◦, obtained by rotating the PSF described in the Introduction and
shown in Figure 2. Background emission in K band (13.5 mag/arcsec2) is added to
the results, which are also perturbed with Poisson and Gaussian (σ = 10 e−/px)
noise. The object and one of the corresponding blurred and noisy images are
shown in Figure 4.

Fig. 4. Star cluster data: simulated object (left panel, stars are marked by circles) and

corresponding blurred and noisy image (right panel).

In this case, iterations are pushed to convergence and therefore the stopping
rule is given by the condition (4.1). We use different values of tol, specifically
10−3, 10−5, and 10−7. In order to measure the quality of the reconstruction, we
introduce an average relative error of the magnitudes defined by

av rel er =
1
q

q∑
j=1

|mj − m̃j |
m̃j

, (4.8)

where q is the number of stars (in our case q = 9) and m̃j and mj are respectively
the true and the reconstructed magnitudes. The results are reported in Table 3.
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Table 3. Reconstruction of the star cluster with three 512×512 equispaced images. The

error is the average relative error in the magnitudes defined in Equation (4.8).

tol = 1e-3
Algorithm It Err Sec SpUp

RL 319 2.39e-4 393.4 -
RL CUDA 319 2.38e-4 4.641 84.8

OSEM 151 1.63e-4 220.8 -
OSEM CUDA 151 1.62e-4 2.421 91.2

SGP 71 1.35e-3 97.80 -
SGP CUDA 71 1.29e-3 1.641 59.6

tol = 1e-5
Algorithm It Err Sec SpUp

RL 1385 6.65e-5 1703 -
RL CUDA 1385 6.64e-5 19.38 87.9

OSEM 675 5.64e-5 980.6 -
OSEM CUDA 675 5.64e-5 10.75 91.2

SGP 337 5.89e-4 455.2 -
SGP CUDA 337 1.79e-4 7.187 63.3

tol = 1e-7
Algorithm It Err Sec SpUp

RL 7472 5.64e-5 9180 -
RL CUDA 7472 5.98e-5 104.8 87.6

OSEM 3750 6.13e-5 5442 -
OSEM CUDA 3750 5.98e-5 59.52 91.4

SGP 572 7.37e-5 772.6 -
SGP CUDA 572 7.05e-5 12.20 63.3

4.2 Boundary effect correction

We show now the effectiveness of the boundary effect correction described in
Section 2.3 on the RL, OSEM and SGP algorithms. The numerical experiments
are designed according to the following procedure: we select a 256× 256 HST im-
age of the Crab nebula NGC 19521, and we build the blurred and noisy image by
means of the same procedure (and the same parameters) adopted in the previous
tests, but using the AO-corrected PSF3 shown in Figure 5.

The parameters of this PSF (pixel size, diameter of the telescope, etc.) are
not provided. However, it has approximately the same width as the ideal PSF
described in Section 4.1. We apply RL and SGP first to the full image, and then
to four 160×160 partly overlapping sub-domains with the addition of the boundary
effect correction. The full deconvolved image is obtained as a mosaic of the central
parts (see Fig. 6). The same comparison is performed in the multiple-image case

3Downloaded from http://www.mathcs.emory.edu/~nagy/RestoreTools/index.html
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Fig. 5. The PSF used for the single deconvolution experiments with boundary effect

correction (left panel) and the corresponding MTF (right panel). Both are represented

in reversed gray scale.

Fig. 6. Crab nebula test: the object (top left), its blurred and noisy image in the case

m = 10 (top right), the reconstructions of the full image with SGP (bottom left) and as

a mosaic of four reconstructions of partially overlapping subdomains, using SGP with

boundary effect correction (bottom right).

by using three 512 × 512 images of the nebula NGC 7027 obtained by means of
the LN PSFs described in the previous section (in this test, 320×320 sub-domains
are extracted). In Tables 4 and 5 we report the serial and parallel performances
of RL, OSEM (when multiple images were available) and SGP in both cases of
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Table 4. Reconstruction of the 256 × 256 Crab object with a standard deconvolution

and as a mosaic of the reconstructions of four subimages with boundary effect correction.

Standard deconvolution Boundary effects correction
m = 10

Algorithm It Err Sec SpUp It Err Sec SpUp
RL 5353 0.128 419.8 - 4070 0.129 1146 -

RL CUDA 5353 0.128 19.45 21.6 4070 0.129 61.55 18.6
SGP 151 0.129 14.28 - 129 0.129 46.42 -

SGP CUDA 151 0.129 1.219 11.7 129 0.133 4.342 10.7
m = 12

Algorithm It Err Sec SpUp It Err Sec SpUp
RL 954 0.136 74.83 - 696 0.137 196.5 -

RL CUDA 954 0.136 3.516 21.3 696 0.137 10.99 17.9
SGP 52 0.137 4.984 - 53 0.137 19.41 -

SGP CUDA 52 0.137 0.406 12.3 53 0.137 1.922 10.1
m = 15

Algorithm It Err Sec SpUp It Err Sec SpUp

RL 128 0.172 10.09 - 99 0.172 28.08 -
RL CUDA 128 0.172 0.483 20.9 99 0.172 1.704 16.5

SGP 10 0.172 1.093 - 9 0.172 3.859 -
SGP CUDA 10 0.172 0.093 11.8 9 0.172 0.360 10.7

Table 5. Reconstruction of the nebula using three equispaced 512 × 512 images, in the

cases of standard deconvolution and as a mosaic of four reconstructed subimages with

boundary effect correction.

Standard deconvolution Boundary effects correction
m = 10

Algorithm It Err Sec SpUp It Err Sec SpUp
RL 3401 0.032 4364 - 2899 0.034 13978 -

RL CUDA 3401 0.032 48.00 90.9 2899 0.034 174.2 80.2
OSEM 1133 0.032 1602 - 950 0.034 5447 -

OSEM CUDA 1133 0.032 18.59 86.2 950 0.034 64.03 85.1
SGP 144 0.033 220.7 - 160 0.034 873.3 -

SGP CUDA 144 0.033 3.563 61.9 160 0.034 15.45 56.5
Standard deconvolution Boundary effects correction

m = 15
Algorithm It Err Sec SpUp It Err Sec SpUp

RL 353 0.091 441.5 - 243 0.094 1174 -
RL CUDA 353 0.091 4.937 89.4 243 0.094 15.28 76.8

OSEM 117 0.091 165.7 - 81 0.094 479.1 -
OSEM CUDA 117 0.091 2.062 80.4 81 0.094 5.939 80.7

SGP 16 0.087 26.14 - 11 0.087 69.88 -
SGP CUDA 16 0.087 0.546 47.9 11 0.086 1.532 45.6

full and splitted deconvolution. The computational times reported in the case of
boundary effect correction refer to the reconstruction of all the four sub-domains.
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4.3 Edge-preserving regularization

As an example of regularized reconstruction we consider the case of an edge-
preserving prior, called hypersurface (HS) regularization (Charbonnier et al. 1997).
It is defined by

f1(x) =
n∑

j1,j2=1

ψδ(D2
j1,j2), δ �= 0, (4.9)

where

ψδ(t) =
√

t + δ2, D2
j1,j2 = (xj1+1,j2 − xj1,j2)

2 + (xj1,j2+1 − xj1,j2)
2. (4.10)

For δ small this regularization is used as a smoothed approximation to total varia-
tion (TV) (see, for instance, Vogel 2002; Bardsley & Luttman 2009; Zanella et al.
2009; Defrise et al. 2011; Staglianò et al. 2011; for TV regularization, see Dey
et al. 2006; Le et al. 2007; Brune et al. 2010; Setzer et al. 2010; Bonettini &
Ruggiero 2011).

By computing the gradient of f1(x) one finds the following natural choice for
the function V1(x) to be inserted in the scaling of the gradient of the complete
objective function (see Eq. (3.5))

[V1(x)]j1,j2 = [2ψ′
δ(D

2
j1,j2) + ψ′

δ(D
2
j1,j2−1) + ψ′

δ(D
2
j1−1,j2)], (4.11)

where ψ′
δ(t) is the derivative of ψδ(t).

We consider as reference object the frequently used spacecraft image charac-
terized by sharp details (Fig. 7). The size is 256×256 (in Fig. 7 we show only the
central part), and the maximum value is 255; it is superimposed to a background
b = 1. Moreover, for generating images with different noise levels, we consider
three other versions with maximum values 2550, 25 500 and 25 5000, respectively
(and backgrounds 10, 100, 1000), obtained by scaling the original object. Next,
the four versions are convolved with a PSF and then perturbed with Poisson noise
(we did not add Gaussian noise). The PSF used is the one already described in the
previous section and shown in Figure 5. For each image we generate 25 different
realizations of noise so that we have a total of 200 noisy images.

We first consider unregularized reconstructions. Early stopping of the iteration
is based on two stopping rules. The first consists in computing at each iteration
the relative r.m.s. error ρ(k), defined in Equation (4.2) and stopping the iteration
when this parameter reaches its minimum value. The second consists in com-
puting the discrepancy D(k), introduced by Bardsley & Goldes (2009), defined in
Equation (4.3), and stopping the iteration when it crosses 1. Iteration is initialized
with x(0) = yam − b (where yam is the arithmetic mean of the image values). In
all cases, D(0) > 1 and D(k) is decreasing for increasing k, providing a solution of
the equation D(k) = 1.

The results are given in Table 6 for the four images of the spacecraft with dif-
ferent noise levels. For each image we report average value and standard deviation
both of the number of iterations and of the reconstruction error, computed using
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Fig. 7. The spacecraft image, represented in reversed gray scale.

the 25 realizations of noise. The reconstruction error is weakly dependent on the
noise realization even if the number of iterations is strongly varying. Stopping
based on Bardsley & Goldes criterion works better at the highest noise level.

Table 6. Unregularized reconstructions of the spacecraft: errors and iterations.

Minimum error Discrepancy
iter error (%) iter error (%)

255 73 ± 19 40.1 ± 0.6 33 ± 14 43.9 ± 9.6
2550 186 ± 58 33.5 ± 0.4 117 ± 84 30.9 ± 11.5
25 500 465 ± 198 29.3 ± 0.3 593 ± 322 30.0 ± 1.1
255 000 1449 ± 376 26.9 ± 0.2 1788 ± 553 27.3 ± 0.5

In column (a) of Figure 8 we show the four images with different noise levels;
in columns (b) and (c) the reconstructions corresponding to the minimum r.m.s.
error and to the criterion of Bardsley & Goldes, respectively; finally, in the last
column, we show the normalized residuals defined by

R(k) =
Hx(k) + b− y√

Hx(k) + b
, (4.12)

and computed in the case of the reconstructions of column (b). Artifacts are
present at the lowest noise levels, due to the reconstruction method.

The previous numerical test is performed for investigating possible improve-
ments of the reconstructions due to the use of edge-preserving regularization, as
provided by the penalty function of Equation (4.9), with δ = 10−4, and we use
the SGP algorithm with the scaling defined in terms of the function (4.11). This
scaling has been already successfully used in the case of denoising of Poisson data
(Zanella et al. 2009) and we use the same parameters of the algorithm described
in that paper. For a given β, iteration is stopped when |fβ(xk; y)− fβ(xk−1; y)| ≤
10−7fβ(xk−1; y). The choice of β is performed by computing x∗

β and using a secant-
like method for satisfying the criterion of Bardsley & Goldes, with a tolerance
of 10−3. Next, the value of β providing the minimum r.m.s. error is obtained by
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Fig. 8. Unregularized reconstructions of the spacecraft: (a) the blurred images; (b) the

reconstructions with minimum r.m.s. error; (c) the reconstructions satisfying the criterion

of Bardsey & Goldes; (d) the normalized residuals in the case of the reconstructions of

column (b).

searching in an interval around the value provided by the discrepancy equation.
Also in this experiment we considered 25 different realization of noise for each test
image.

The reconstruction errors and the number of required iterations are reported
in Table 7. The average reconstruction errors are smaller than those obtained in
the unregularized case, with comparable standard deviations. As concerns the use
the discrepancy criterion, it provides acceptable results except at the highest noise
level. The reconstructions and the normalized residuals are shown in Figure 9.
The residuals are still affected by strong artifacts, at least in the case of the lowest
noise levels.

5 Concluding remarks and perspectives

We briefly discuss the main points of this paper by considering first the case of
the ML problems.



M. Bertero et al.: Scaled Gradient Projection Methods 353

Fig. 9. Regularized reconstructions of the spacecraft: (a) the blurred images; (b) the

reconstruction with the minimum r.m.s. error; (c) the reconstructions satisfying the crite-

rion of Bardsley & Goldes; (d) the normalized residuals in the case of the reconstructions

of column (b).

Table 7. Regularized reconstructions of the spacecraft: iterations and errors.

Minimum error Discrepancy
iter error (%) iter error (%)

255 247 ± 54 36.4 ± 0.6 367 ± 198 40.7 ± 4.5
2550 458 ± 138 30.7 ± 0.3 462 ± 210 32.2 ± 1.0

25 500 1308 ± 124 26.1 ± 0.2 933 ± 221 26.9 ± 0.7
255 000 2190 ± 409 24.3 ± 0.8 1700 ± 462 24.9 ± 1.0

Both RL and SGP (with the scaling suggested by RL) converge to minimizers
of the data fidelity function defined in terms of the generalized KL divergence, in
particular to the unique minimizer if the function is strictly convex. In the case
of the reconstruction of binaries or star clusters, the algorithms must be pushed
to convergence and, of course, they provide the same result. However, as follows
for instance from Table 4, the convergence of SGP is much faster than that of RL
with a speed-up increasing from 4 to about 12 for the serial implementation, and
from 3 to 9 for the parallel implementation, if the required accuracy is increased.
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On the other hand, in the case of complex objects such as nebulae, galaxies
or similar, it is well known that an early stopping of the iterations is required in
the case of RL. Indeed the algorithm has the so-called semi-convergence property,
in the sense that the iterations first approach the true object (we are talking
about simulations) and then go away. Therefore it is interesting to remark that
the iterations of SGP have a similar behaviour. The trajectories formed by the
iterations of the two algorithms are different even when the starting point is the
same, but the two points of minimal distance from the true object are very close
(in general, visually indistinguishable), and SGP reaches the point with a number
of steps much smaller than RL. The gain in computational time is considerable
in spite of the fact that the cost of one SGP iteration is about 30% higher than
that of one RL iteration (Bonettini et al. 2009). If we look at Tables 1 and 2, we
find a speed-up ranging from 10 to 30 in the serial implementation, and from 6 to
20 in the parallel implementation. The speed-up depends on the specific object
and, in general, it is higher when a higher number of iterations is required. We
conclude these brief remarks by pointing out that, in the case of faint objects, SGP
implemented on GPU is able to process a 2048× 2048 image in a few seconds.

In the case of a Bayesian approach we do not still have estimates of the speed-
up provided by SGP algorithms (with the scaling suggested by SGM) with respect
to other algorithms and, in particular, SGM (with or without line-search in terms,
for instance, of Armijo rule). In this paper we give only a few preliminary results
obtained in the case of SGP deconvolution with edge-preserving regularization.
The speed-up provided by GPU implementation of SGP edge-preserving denoising
of Poisson data is estimated in Serafini et al. (2010) (see also Ruggiero et al. 2010,
for GPU implementation of SGP deconvolution without regularization). A speed-
up of the order of 20 is observed.

We expect that also in the case of regularized deconvolution SGP can provide
very fast algorithms, reducing the computational time required for the estimation
of the value of the regularization parameter with one of the methods described in
Section 4 or other proposed methods. These topics are under investigation by our
group. The goal is to provide a library of algorithms for different regularization
functions.

We conclude by remarking that the SGP approach has been already applied to
other problems, in particular to the computation of nonnegative least-square solu-
tions (Benvenuto et al. 2010), to the nonnegative reconstruction of astronomical
data from sparse Fourier data (Bonettini & Prato 2010) and to the least-squares
problem with a sparsity regularization (Loris et al. 2009).
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