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MCMC ALGORITHMS FOR SUPERVISED AND
UNSUPERVISED LINEAR UNMIXING

OF HYPERSPECTRAL IMAGES

N. Dobigeon1, S. Moussaoui2, M. Coulon1, J.-Y. Tourneret1

and A.O. Hero3

Abstract. In this paper, we describe two fully Bayesian algorithms that
have been previously proposed to unmix hyperspectral images. These
algorithms relies on the widely admitted linear mixing model, i.e. each
pixel of the hyperspectral image is decomposed as a linear combination
of pure endmember spectra. First, the unmixing problem is addressed
in a supervised framework, i.e., when the endmembers are perfectly
known, or previously identified by an endmember extraction algorithm.
In such scenario, the unmixing problem consists of estimating the mix-
ing coefficients under positivity and additivity constraints. Then the
previous algorithm is extended to handle the unsupervised unmixing
problem, i.e., to estimate the endmembers and the mixing coefficients
jointly. This blind source separation problem is solved in a lower-
dimensional space, which effectively reduces the number of degrees of
freedom of the unknown parameters. For both scenarios, appropriate
distributions are assigned to the unknown parameters, that are esti-
mated from their posterior distribution. Markov chain Monte Carlo
(MCMC) algorithms are then developed to approximate the Bayesian
estimators.

1 Abstract

For several decades, hyperspectral imagery has been demonstrating its high inter-
est in numerous research works devoted to Earth monitoring. This interest can
be easily explained by the high spectral resolution of the images provided by the
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hyperspectral sensors. For instance, hyperspectral images can provide automatic
classification maps for mineralogic surveys, avoiding long and tedious sampling
campaigns (Jackson & Landgrebe 2002; Rellier et al. 2004). When environmental
issues are on the front of the stage, hyperspectral imaging enables to provide cru-
cial information related to macroscopic parameters, e.g., the status of ecosystems
or plants. Obviously, the price to pay for extracting the information contained in
these images is to develop new methods exploiting the data provided by hyper-
spectral sensors efficiently.

Since the first hyperspectral images were acquired, spectral unmixing has been
of considerable interest, not only in the remote sensing community, but also in
the signal and image processing community. Solving this problem can indeed
provide answers to various important issues such as classification (Chang 2003),
material quantification (Plaza et al. 2005) and sub-pixel detection (Manolakis et al.
2001). Spectral unmixing consists of decomposing each pixel of the observed scene
into a collection of reference spectra, usually referred to as endmembers, and
estimating their proportions, or abundances, in each pixel (Bioucas-Dias et al.
2012). To formally describe the mixture, the most frequently encountered model
is the macroscopic model which gives a good approximation of the nonlinear model
introduced by Hapke (Hapke 1981) in the reflective spectral domain from visible
to near-infrared (0.4 μm to 2.5 μm) (Johnson et al. 1983). This linear model
assumes that the observed pixel spectrum is a weighted linear combination of the
endmember spectra.

As noticed in (Keshava & Mustard 2002), linear spectral unmixing has of-
ten been handled as a two-step procedure: the endmember extraction step and
the inversion step, respectively. In the first step of the analysis, the macroscopic
materials that are present in the observed scene are identified by using an end-
member extraction algorithm (EEA). The most popular EEAs include pixel pu-
rity index (PPI), N-FINDR (Winter 1999), and more recently the VCA algorithm
(Nascimento & Bioucas-Dias 2005a) which proposes to recover the vertices of the
biggest simplex in the observed data. A common assumption in these EEAs is
that they require the presence of pure pixels in the observed image. Conversely,
(Craig 1994) and (Bowles et al. 1995) proposed minimum volume transforms to
recover the smallest simplex that contains all the dataset.

The second step of spectral unmixing is devoted to the abundance estimation.
These abundances have to ensure constraints inherent to hyperspectral imagery: as
they represent proportions, the abundances have to satisfy positivity and additivity
constraints. Several algorithms proposed in the literature to solve this inversion
step rely on constrained optimization techniques (Heinz & Chang 2001; Theys
et al. 2009; Tu et al. 1998).

This paper studies alternatives based on Bayesian inference for supervised and
unsupervised unmixing problems. In the first part of this work, the endmembers
are assumed to be previously identified, e.g., using a priori knowledge regarding
the observed scene or using results provided by an EEA. In this case, the unmixing
algorithm performs the inversion step, i.e., it estimates the abundance coefficients
under positivity and additivity constraints. In a second part of this paper, we
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introduce a spectral unmixing algorithm in a fully unsupervised framework to
estimate the pure component spectra and their proportions jointly.

In both frameworks, Bayesian formulation allows the constraints within the
model to be satisfied. Indeed, appropriate prior distributions are chosen to take
into account the positivity and additivity of the abundances, as well as the pos-
itivity of the endmember spectra. To overcome the complexity of the posterior
distribution, Markov chain Monte Carlo algorithms are proposed to approximate
the standard minimum mean squared error estimator. Moreover, as the full pos-
terior distribution of all the unknown parameters is available, confidence intervals
can be easily computed. These measures allow the accuracy of the different esti-
mates to be quantified.

2 Linear mixing model and problem statement

Let consider P pixels of an hyperspectral image acquired in L spectral bands.
According to the linear mixing model, described for instance in (Bioucas-Dias et al.
2012), the observed spectrum yp = [yp,1, . . . , yp,L]T of the pth pixel (p = 1, . . . , P )
is written as an the linear combination of R spectral signatures mr, corrupted by
an additive noise np:

yp =
R∑

r=1

mrap,r + np, (2.1)

where mr = [mr,1, . . . , mr,L]T is the pure spectrum that is characteristic of the
rth material and ap,r is the abundance of the rth material in the pth pixel. More-
over, in (2.1), np = [np,1, . . . , np,L]T is an noise sequence whose components are
assumed to be independent and identically distributed (i.i.d.) according to a cen-
tered Gaussian distribution with covariance matrix4 Σn = σ2IL, where IL is the
identity matrix of size L× L

np|σ2 ∼ N (0L,Σn) . (2.2)

Due to physical considerations (Keshava & Mustard 2002), the abundance vec-
tors ap = [ap,1, . . . , ap,R]T in (2.1) satisfy the following positivity and additivity
constraints {

ap,r ≥ 0, ∀r = 1, . . . , R,∑R
r=1 ap,r = 1.

(2.3)

In other words, the P abundance vectors belong to the space

A = {ap : ‖a‖1 = 1 and ap � 0} , (2.4)

where ‖·‖1 is the �1 norm such that ‖x‖1 =
∑

i |xi|, and ap � 0 stands for
the set of inequalities {ap,r ≥ 0}r=1,...,R. In addition, the spectral signatures mr

4The proposed model can be easily extended to more complex noise models, following for
instance (Dobigeon et al. 2008a).
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correspond to reflectance measures and, as a consequence, need to ensure the
positivity constraints

mr,l ≥ 0, ∀r = 1, . . . , R, ∀l = 1, . . . , L. (2.5)

If we consider all the pixels in the hyperspectral image, the set of Equations (2.1)
can be rewritten using the following matrix notations

Y = MA + N (2.6)

where Y is a L× P matrix that contains all the observations associated with the
image pixels, M is the L × R matrix of the spectral signatures, A is the R × P
matrix of the abundances and N is a L× P matrix of the noise vectors

Y = [y1, . . . ,yP ] , M = [m1, . . . ,mR] ,
A = [a1, . . . ,aP ] , N = [n1, . . . ,nP ] . (2.7)

This paper proposes a Bayesian approach to first estimate the abundance coeffi-
cient under the constraints (2.3) when the spectral signatures are known. Then,
the spectra of the pure components will be assumed unknown and will be included
within the estimation procedure.

3 Supervised unmixing: The spectral components are known

When the pure spectral components (also known as endmembers) are perfectly
known, the problem of linear unmixing reduces to the inversion step, i.e., the con-
strained estimation of the abundances. This problem can be formulated as a linear
regression under constraints whose resolution can be conducted within a Bayesian
framework. Indeed, Bayesian models are very convenient in such situation since
the constraints are conveniently handled when defining a priori distributions for
the unknown parameters. Several constraints have been studied in the literature,
including monotony (Chen & Deely 1996), positivity (Moussaoui et al. 2006) or
sparsity (Blumensath & Davies 2007; Févotte & Godsill 2006). Constraints inher-
ent to hyperspectral imagery are positivity and additivity, as explained in Section
2. In what follows, the Bayesian model to solve the supervised spectral unmixing
model is described. Note that in this supervised scenario, spectral unmixing is con-
ducted pixel-by-pixel. As consequence, to lighten the notations, the dependence
of the quantity yp, ap, cp on the pixel p will be omitted.

3.1 Bayesian model

3.1.1 Likelihood

The linear mixing model defined by (2.1) and the statistical properties (2.2) of the
noise vector n lead to a Gaussian distribution for the observed spectrum for the
pth pixel:

y|a, σ2 ∼ N
(
Ma, σ2IL

)
. (3.1)
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As a consequence, the likelihood function of the vector y can be written

f
(
y
∣∣a, σ2

)
=

(
1

2πσ2

)L
2

exp

[
−‖y −Ma‖2

2σ2

]
, (3.2)

where ‖x‖ =
(
xT x

) 1
2 is the �2-norm of the vector x.

3.1.2 Parameter prior distributions

When the spectra of the pure components m1, . . . ,mR are known, the vector of
unknown vector denoted as θ is composed of the abundance vector and the noise
variance θ =

{
a, σ2

}
.

Abundance coefficients. For each pixel p, thanks to the additivity constraints
enounced in (2.3), the abundance vector a can be rewritten5

a =
[

c
aR

]
with c =

⎡⎢⎣ a1

...
aR−1

⎤⎥⎦ , (3.3)

and aR = 1 −
∑R−1

r=1 ar. According to the model proposed in (Dobigeon et al.
2008b), the prior distribution chosen for c is a uniform distribution defined on the
simplex S

S = {c; ‖c‖1 ≤ 1 and c � 0} . (3.4)
Choosing this prior distribution for c is fully equivalent of choosing a Dirichlet
prior D (1, . . . , 1) for a, i.e., a uniform distribution on the the set A of admissible
values for a (defined by (2.4)) (Robert 2007, Appendix A).

Noise variance. A conjugate inverse-gamma distribution is chosen as a prior
distribution for the noise variance σ2

σ2 |ν, γ ∼ IG
(ν

2
,
γ

2

)
, (3.5)

where IG
(

ν
2 , γ

2

)
is an inverse-gamma distribution of parameters ν

2 and γ
2 . This

distribution has been successfully used in several works of the literature, e.g.,
(Punskaya et al. 2002) and (Dobigeon et al. 2007). As in the references above, the
hyperparameter ν will be fixed to ν = 2.

Moreover, γ is an hyperparameter assumed to be unknown, and a non-informative
Jeffreys’ distribution is chosen as prior distribution (Jeffreys 1961)

f (γ) ∝ 1
γ
1R+ (γ) , (3.6)

where ∝ stands for “proportional to”.

5For writing conciseness, the last component of a will be always expressed as a function of
the others. Note however that in the algorithm described in the following section, the discarded
component can be randomly chosen at each iteration of the Gibbs sampler.
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3.1.3 Posterior distribution

The posterior distribution of the unknown parameter vector θ =
{
c, σ2

}
is com-

puted from the following hierarchical model

f(θ|y) ∝
∫

f(y|θ)f(θ|γ)f(γ)dγ, (3.7)

where f (y|θ) and f (γ) are defined in (3.2) and (3.6), respectively. By assuming
prior independence between σ2 and c, i.e. f (θ|γ) = f (c) f(σ2|γ), the hyperpa-
rameter γ can be integrated out from the joint distribution f (θ, γ|y) in (3.7),
which leads to

f
(
c, σ2|y

)
∝ 1

σL+2
exp

[
−‖y −Ma‖2

2σ2

]
1S (c) . (3.8)

Note that this posterior distribution is defined on the simplex S × R+, i.e., c
satisfies the constraints resulting from the positivity and additivity constraints of
a. We introduce in the following section a Gibbs sampler that allows samples to
be generated according to the joint distribution f

(
c, σ2|y

)
.

3.2 Gibbs sampler

Samples (denoted as ·(t) where t is the iteration index) can be generated according
to f

(
c, σ2|y

)
thanks to a Gibbs sampler described below. It successively generates

samples according to the conditional distributions f
(
c|σ2,y

)
and f(σ2|c,y). The

main steps of this algorithm are detailed below and are summarized by Algo. 1.
The interested reader can refer to (Robert & Casella 1999) for more details on
MCMC methods.

Algorithm 1 Gibbs sampler for supervised unmixing
1: % Initialization

2: Sampling the parameters σ̃2(0) and c̃(0) from the prior distributions defined in
Section 3.1.2,

3: % Iterations

4: for t = 1, 2, . . . , do
5: Sampling c̃(t) according to the distribution (3.11),
6: Sampling σ̃2(t) according to the distribution (3.12),
7: end for

3.2.1 Sampling according to f
(
c|σ2,y

)
The conditional posterior distribution of the partial abundance vector is

f
(
c
∣∣σ2,y

)
∝ exp

[
− (c− υ)T Σ−1 (c− υ)

2

]
1S (c) , (3.9)
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where ⎧⎪⎨⎪⎩
Σ =

[(
M-R −mR1T

R−1

)T
Σ−1

n

(
M-R −mR1T

R−1

)]−1

,

υ = Σ
[(

M-R −mR1T
R−1

)T
Σ−1

n (y −mR)
]
,

(3.10)

with Σ−1
n = 1

σ2 IL, 1R−1 = [1, . . . , 1]T ∈ RR−1 and where M-R is the matrix
M whose Rth column has been removed. As a consequence, the vector c

∣∣σ2,y
is distributed according to a multivariate Gaussian distribution truncated on the
simplex S defined by (3.4)

c
∣∣σ2,y ∼ NS (υ,Σ) . (3.11)

Sampling according to this truncated Gaussian distribution can be conducted fol-
lowing the strategy described in (Dobigeon & Tourneret 2007).

3.2.2 Sampling according to f(σ2|c,y)

By looking at the joint distribution f
(
σ2, c|y

)
, it can be stated that the conditional

distribution of σ2|c,y is the following inverse-gamma distribution

σ2|c,y ∼ IG
(

L

2
,
‖y −Ma‖2

2

)
· (3.12)

3.3 Simulation results on synthetic data

To illustrate the algorithm performance, a synthetic mixture of R = 3 pure com-
ponents is generated. These spectral signatures are extracted from the library
provided with the ENVI software (RSI (Research Systems Inc.) 2003, p. 1035)
and are characteristics of a urban or sub-urban scene: construction concrete,
green grass and micaceous loam. The mixing coefficients are defined as a1 = 0.3,
a2 = 0.6 and a2 = 0.1. The observed spectrum has been corrupted by an additive
Gaussian noise with variance σ2 = 0.025, which corresponds to a signal-to-noise

ratio RSB ≈ 15dB where RSB = L−1σ−2
∥∥∥∑R

r=1 mrar

∥∥∥2

. The endmembers and
the resulting observed spectrum are represented in Figure 1.

Figure 2 shows the posterior distributions of the abundance coefficients ar

(r = 1, 2, 3) estimated by the proposed Gibbs sampler for NMC = 20 000 iterations
(with Nbi = 100 burn-in iterations). These distributions are in good agreement
with the actual values of the coefficients a = [0.3, 0.6, 0.1]T . As a comparison, the
results obtained with the FCLS algorithm (Chang & Ji 2001; Heinz & Chang 2001)
have been also depicted in this figure for NMC Monte Carlo simulations (i.e., for
NMC realizations of the noise sequence).

3.4 Results on real data

This paragraph presents the analysis of an hyperspectral image that has been
widely studied in the literature (Akgun et al. 2005; Chen 2005; Christophe et al.
2005; Tang & Pearlman 2004). This image, depicted in Figure 3, is initially
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Fig. 1. Top: endmember spectra: construction concrete (line), green grass (dashed line),

loam (dotted line). Bottom: spectrum of the observed pixel.

composed of 189 spectral bands (when the water absorption bands have been
removed). It has been acquired by the spectro-imager AVIRIS (Jet Propulsion
Lab. (JPL) 2006) in 1997 over Moffett Field, CA. It is composed of a lake and a
coastal area. The spectral unmixing algorithm has been applied on a 50×50 scene.
The analyzed image area is depicted in Figure 3.

3.4.1 Endmember identification

First, the pure materials that are present in the image have been identified. Since
no prior knowledge is available for the analyzed scene, an endmember extraction
algorithm has been used to recover to identify the endmember spectra. More pre-
cisely, N-FINDR (Winter 1999) has been used to identify R = 3 endmembers that
are represented in Figure 4: vegetation, water and soil. Note that the number of
endmembers has been determined by a principal component analysis, as explained
in (Keshava & Mustard 2002).

3.4.2 Abundance estimation

The supervised unmixing algorithm introduced in Sections 3.1 and 3.2 has been
applied on each pixel of the AVIRIS hyperspectral image using the endmembers
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Fig. 2. Posterior distributions of the abundance coefficients [a1, a2, a3]
T estimated by the

proposed algorithm (continuous lines) and histograms of the estimated values by FCLS

(dashed lines).

previously identified. The abundance maps estimated by the proposed algorithm
for the R = 3 materials are depicted in Figure 5 (top). Note that a white (resp.
black) pixel corresponds to a high (resp. low) proportion of the corresponding
material. The lake area (that appears as white pixels on the water abundance map)
has been clearly recovered. The results obtained with the unmixing algorithm
provided with the ENVI software (RSI (Research Systems Inc.) 2003, p. 739) are
also depicted in Figure 5 (bottom). These results obtained with constrained least
square algorithm are in good agreement with those of Figure 5 (top). Note however
that the proposed algorithm also allows posterior distributions to be estimated.
These posterior distributions can be useful to derive confidence intervals.

4 Unsupervised unmixing

As explained in (Bioucas-Dias et al. 2012; Keshava & Mustard 2002), linear spec-
tral unmixing has been often addressed in a two-step procedure: i) endmember
identification by an EEA and ii) abundance estimation. However, solving the
unmixing problem in two distinct and successive steps may lead to poor estima-
tion performance. In particular, when no pure pixels are present in the image,
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Fig. 3. Real hyperspectral image acquired by AVIRIS over Moffett Field in 1997 (left)

and the region of interest (right).

Fig. 4. The R = 3 endmember spectra obtained by N-FINDR.

the geometric EEA such as VCA, N-FINDR or PPI provide inadequate endmem-
ber estimates. To overcome this issue, we propose to solve the linear unmixing
problem in a fully unsupervised Bayesian framework, by estimating the endmem-
ber spectra and the corresponding abundances jointly. This approach casts the
unmixing problem as an blind source separation (BSS), that as received a huge
interest in the signal processing literature. In particular, it is well known that
independent component analysis (ICA) (Hyvärinen et al. 2001) is a powerful so-
lution of BSS problems. However, as noticed in (Nascimento & Bioucas-Dias
2005b) and (Dobigeon & Achard 2005), ICA-based algorithms fails to solve the
unmixing problem, mainly due to the high correlation between the source signals.
Other strategies, based on non-negative matrix factorization techniques (Paatero
& Tapper 1994), can be used to jointly estimate the endmember spectra and the
abundance coefficients. However, these algorithms do not take explicitly into ac-
count the sum-to-one constraint on the abundance coefficients. Conversely, the
Bayesian framework is a convenient way to ensure all the constraints (positivity
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Fig. 5. Top: abundance maps estimated by the proposed algorithm. Bottom: abundance

maps estimated by the unmixing routine provided with the ENVI software.

on the abundance coefficients and endmember spectra, additivity on the abun-
dance coefficients) by defining appropriate prior distributions for the unknown
parameters.

Moreover, a geometrical interpretation of the linear unmixing problem allows
one to show that the spectral signatures can be estimated in an appropriate lower-
dimensional subspace. This estimation in a subspace allows the number of degree
of freedom to be significantly reduced for the parameters, while ensuring the phys-
ical constraints.

4.1 Bayesian model

Unsupervised spectral unmixing can be formulated as a blind source separation
problem. Thus, the joint estimation of the endmembers and the abundances re-
quires to consider all the image pixels Y = [y1, . . . ,yP ] during the analysis. From
a pixel-wise analysis in Section 3.1, spectral unmixing is now conducted on a whole
hyperspectral image. More specifically, the previous Bayesian model introduced
in 3.1 is extended by defining a prior model for the endmember spectra. The new
posterior distribution associated with the new set of unknown parameters is finally
derived.

4.1.1 Likelihood function

By assuming the independence of the noise vector, the new likelihood function as-
sociated with the observed pixel matrix Y is the product of the marginal likelihood
functions (3.1.1)

f (Y|M,C) =
P∏

p=1

f (yp|M, cp)
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where C = [c1, . . . , cP ]T is a matrix coming from the reparametrization (3.3) of
the abundance vectors and f (yp|M, cp) has been defined in (3.1.1).

4.1.2 Prior of the abundance coefficients

The coefficient vectors c1, . . . , cP are assumed to be a priori independent. Thus,
the prior distribution for the coefficient matrix C can be written as the product
of the prior chosen in paragraph 3.1.2

f (C) =
P∏

p=1

f (cp)

with
f (cp) ∝ 1S (cp)

where S has been defined in (3.4). This prior allows the constraints inherent to the
linear mixing model to be ensured. Moreover, this prior has the great advantage
of imposing a constraint on the size of the simplex spanned by the endmembers
in the hyperspectral space. Indeed, as demonstrated in (Dobigeon et al. 2009),
among two admissible solutions for the unmixing problem, this prior will favor
the solution that corresponds to the simplex of minimum volume. Note that this
property has been exploited also in (Arngren et al. 2011; Bowles et al. 1995; Craig
1994).

4.1.3 Prior model for the endmembers

Dimensionality reduction. First, notice that the set

SM =

{
x ∈ �L; x =

R∑
r=1

λrmr,

R∑
r=1

λr = 1, λr ≥ 0

}

is a convex polytope of �L whose vertices m1, . . . ,mR are the R � L spec-
tral signatures to be estimated. As a consequence, the unobserved data X =
MA = Y−N can be represented in a lower-dimensional subspace VK of �K with
R − 1 ≤ K � L without any loss of information. In this subspace, the noise-free
data X span a (R− 1)-simplex whose vertices are the projections of the endmem-
bers. As stated in (Keshava & Mustard 2002), dimensional reduction is a classical
step while performing spectral unmixing, required by numerous EEAs, such as
N-FINDR (Winter 1999) and PPI (Boardman 1993). In this paper, we propose
to estimate the projections tr (r = 1, . . . , R) of the spectral signatures mr onto
the subspace VK . This approach allows the number of degrees of freedom to be
significantly reduced. We assume that this subspace has been previously estimated
by a dimensional reduction technique (e.g., principal component analysis, PCA).
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PCA-based dimensional reduction. The empirical covariance matrix of Υ
of the observed data Y is

Υ =
1
P

P∑
p=1

(yp − ȳ) (yp − ȳ)T (4.1)

where ȳ is the empirical mean

ȳ =
1
P

P∑
p=1

yp. (4.2)

Let {
D = diag (λ1, . . . , λK) ,

V = [v1, . . . ,vK ]T
(4.3)

denote the diagonal matrix of the K highest eigenvalues and the corresponding
matrix of eigenvectors of Υ, respectively. The projected vector tr ∈ �K of the
endmember spectrum mr ∈ �L is then obtained by the affine transformation

tr = P (mr − ȳ) (4.4)

where P = D− 1
2 V. Equivalently,

mr = Utr + ȳ (4.5)

where U = VT D
1
2 . Note that in the subspace VR−1 obtained for K = R− 1, the

vectors {tr}r=1,...,R span a simplex that the classical EEAs (e.g., N-FINDR Winter
1999, MVT Craig 1994 and ICE Berman et al. 2004) try to estimate. We propose
to estimate the projected vertices tr (r = 1, . . . , R) of this simplex in a Bayesian
setting. The prior distributions assigned to the projections tr (r = 1, . . . , R) are
detailed in the following paragraph.

Prior distributions of the projected endmembers. The spectral signature
mr ∈ �L and its projection tr ∈ �K onto VK are related by tr = P (mr − ȳ)
and mr = Utr + ȳ, where P is a projection matrix, U is the pseudo-inverse of P
and ȳ is the empirical mean of the observations. The prior distributions chosen
for the endmember spectra should be chosen such that the endmember spectra
satisfy the positivity constraints (2.5). Straightforward computations allows the
space Tr ⊂ VK to be identified such that

{ml,r ≥ 0, ∀l = 1, . . . , L} ⇔ {tr ∈ Tr} (4.6)

thanks to the L following inequalities

Tr =

{
tr; ȳl +

K∑
k=1

ul,ktk,r ≥ 0, l = 1, . . . , L

}
, (4.7)



394 New Concepts in Imaging: Optical and Statistical Models

One of the originality of the proposed blind source separation method consists of
defining prior distributions for the endmember projections tr onto the subspace
VK instead of the endmembers mr themselves. More precisely, a multivariate
Gaussian distribution

tr ∼ NTr

(
er, s

2
rIK

)
(4.8)

truncated to the set Tr is chosen as prior distribution for each vector tr (r =
1, . . . , R). The mean vectors er of these prior distributions are fixed to some
values corresponding to the solutions provided by fast EEA, such as N-FINDR and
VCA. In absence of additional prior information, the variances s2

r (r = 1, . . . , R)
are fixed to large values s2

1 = . . . = s2
R = 50, which allows some deviations to be

modeled between the actual endmember projections tr and the crude estimations
er provided by N-FINDR or VCA.

4.1.4 Posterior distribution

Following the the Bayes rule, the prior distributions of unknown parameters de-
fined in the paragraphs 4.1.3 and 4.1.2, associated with the likelihood function
defined in paragraph 4.1.1, lead to the following joint posterior distribution

f
(
C,T, σ2

∣∣Y)
∝

R∏
r=1

exp

[
−‖tr − er‖2

2s2
r

]
1Tr (tr)

×
P∏

p=1

[(
1
σ2

)L
2 +1

exp

(
−‖yp − (UT + ȳ1R−1)ap‖2

2σ2

)]

×
P∏

p=1

1S (cp) . (4.9)

Since the standard Bayesian estimators (e.g., minimum mean square error
(MMSE) or maximum a posteriori (MAP) estimators) are difficult to derive from
(4.9), a Gibbs algorithm, detailed in the following paragraph, allows samples{
C(t),T(t), σ2(t)

}
to be generated according to this distribution. These samples

are then used to approximate the Bayesian estimators.

4.2 Gibbs sampler

The Gibbs sampler that allows samples to be asymptotically distributed accord-
ing to the posterior (4.9) is detailed below. This algorithm is similar to the Gibbs
sampler introduced in paragraph 3.2 (Algo. 1) with an additional step that con-
sists of sampling according to the conditional distribution f

(
T|C, σ2,Y

)
(see also

Algo. 2).
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Algorithm 2 Gibbs sampler for unsupervised unmixing
1: % Pre-processing

2: Computing the empirical mean ȳ following (4.2),
3: Computing the matrices D and V following (4.3) thanks to a PCA,
4: Set U =

(
VT V

)−1
VT D

1
2 ,

5: Choose the crude estimations er ∈ VK required in (4.8),
6: % Initialization

7: for r = 1, . . . , R do
8: Sampling t(0)

r according to (4.8),
9: Set m(0)

r = Ut(0)
r + ȳ,

10: end for
11: Sampling σ2(0) according to (3.5),
12: % Iterations

13: for t = 1, 2, . . . , do
14: for p = 1, . . . , P do
15: Sampling c(t)

p according to (4.11),
16: end for
17: for r = 1, . . . , R do
18: for k = 1, . . . , K do
19: Sampling t

(t)
k,r according to (4.15),

20: end for
21: Set m(t)

r = Ut(0)
r + ȳ,

22: end for
23: Sampling σ2(t) according to (4.17).
24: end for

4.2.1 Sampling according to f
(
C|T, σ2,Y

)
For each pixel p, as in paragraph 3.2.1, the conditional distribution of the coefficient
vector cp is

f
(
cp

∣∣T, σ2,yp

)
exp

[
−

(cp − υp)
T Σ−1

p (cp − υp)
2

]
1S (cp) , (4.10)

where Σp and υp have been defined in 3.2.1. Consequently, the vector cp

∣∣T, σ2,yp

is distributed according to a multivariate Gaussian distribution truncated onto the
simplex S defined by (3.4)

cp

∣∣T, σ2,yp ∼ NS (υp,Σp) . (4.11)
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4.2.2 Sampling according to f
(
T|C, σ2,Y

)
Let T-r denote the T whose rth column has been removed. The conditional
posterior distribution of tr (r = 1, . . . , R) is

f
(
tr|T-r, cr, σ

2,Y
)
∝ exp

[
−1

2
(tr − τ r)

T Λ−1
r (tr − τ r)

]
1Tr (tr) , (4.12)

with ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Λr =

[
P∑

p=1

a2
p,rU

T Σ−1
n U +

1
s2

r

IK

]−1

,

τ r = Λr

[
P∑

p=1

ap,rUT Σ−1
n εp,r +

1
s2

r

er

]
,

(4.13)

and
εp,r = yp − ap,rȳ −

∑
j �=r

ap,jmj. (4.14)

Generating vectors distributed according to this distribution is not straightfor-
ward, mainly due to the truncature on the set Tr. One alternative strategy
consists of generating each component tk,r of tr conditionally upon the oth-
ers t-k,r = {tj,r}j �=k. By denoting U+

k = {l; ul,k > 0}, U−
k = {l; ul,k < 0} and

εl,k,r = ȳl +
∑

j �=k ul,jtj,r, it follows

tk,r |t-k,r,T-r, cr, σ
2,Y ∼ N[t−k,r,t+k,r]

(
wk,r , z

2
k,r

)
, (4.15)

with ⎧⎪⎪⎨⎪⎪⎩
t−k,r = max

l∈U+
k

−εl,k,r

ul,k
,

t+k,r = min
l∈U−

k

−εl,k,r

ul,k
,

(4.16)

where wk,r and z2
k,r are the conditional mean and variance computed following

(Kay 1988, p. 324) (see also similar computations in Dobigeon & Tourneret 2007).
Generating samples according to the truncated Gaussian distribution (4.15) can
be performed using various strategies, such as (Robert 1995).

4.2.3 Sampling according to f
(
σ2|C,T,Y

)
The conditional distribution of σ2|C,T,Y is the inverse-gamma distribution

σ2|C,T,Y ∼ IG
(

PL

2
,
1
2

P∑
p=1

‖yp −Map‖2
)

. (4.17)
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4.3 Simulation results on synthetic data

To illustrate the performance of the proposed method, the algorithm has been
applied on a 100 × 100-pixel image, where R = 3 spectral signatures have been
linearly mixed: construction concrete, green grass, red bare brick. These signa-
tures have been measured in L = 413 spectral bands and are depicted in Figure 6
(top, in black). These materials have been linearly mixed with random propor-
tions (ensuring the sum-to-one and positivity constraints), with an i.i.d. noise
corresponding to signal-to-noise ratio SNR = 15dB.

Fig. 6. Top: actual spectra (black), spectra estimated by N-FINDR (blue), estimated by

VCA (green) and estimated by the proposed approach (red). Middle and bottom: actual

and estimated abundance maps.

The estimation results for the spectral signatures obtained by the proposed
algorithm, depicted in Figure 6 (top, in red) have been compared with the results
provided by two geometrical EEAs: VCA and N-FINDR. Table 1 (top) reports
the mean square errors defined by

MSE2
r = ‖m̂r −mr‖2 , r = 1, . . . , R. (4.18)
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The results regarding the estimation of the 104 abundance vectors (see Fig. 6,
bottom), are reported in the Table 1 (bottom) in terms of mean square errors for
each component:

MSE2
r =

P∑
p=1

(âp,r − ap,r)
2
, r = 1, . . . , R, (4.19)

where âp,r is the estimated abundance coefficient for the #r material in the #p
pixel. These results demonstrate that the proposed algorithm provides better
estimation performance than the two other algorithms.

Table 1. Estimation performance comparison between the algorithms VCA, N-FINDR

and the proposed Bayesian approach: mean square errors between the R = 3 estimated

and actual spectra (top), global mean square errors between the estimated and actual

abundances (bottom).

Spectra Bayesian algo. VCA N-FINDR
Endmember #1 0.10 1.29 0.54
Endmember #2 2.68 15.59 5.19
Endmember #3 0.16 4.35 0.57

Abundances Bayesian algo. VCA N-FINDR
Endmember #1 25.68 57.43 30.66
Endmember #2 29.97 74.48 46.45
Endmember #3 3.19 83.02 11.22

4.4 Results on real data

The proposed algorithm is finally applied to the Moffett Field image introduced
in Section 3.4. The R = 3 endmembers identified by the Bayesian algorithm are
depicted in Figure 7 (top). The corresponding estimated abundance maps are
represented in Figure 7 (bottom). Both results are in good agreement with those
of Figures 4 and 5 obtained using a supervised unmixing approach.

5 Conclusion

This article presented two Bayesian algorithms to solve the problem of linear un-
mixing of hyperspectral images in supervised and unsupervised frameworks. For
each scenario, suitable prior distributions were assigned to the unknown parame-
ters. In particular, these distributions were chosen to ensure constraints inherent
to the mixing model: positivity and additivity for the abundance coefficients and
positivity for the endmember spectra. MCMC algorithms were designed to gen-
erate samples distributed according to the posterior distribution of the unknown
parameters. Simulation results, obtained on synthetic and real hyperspectral im-
ages, demonstrated the interest of the proposed methods. Both of the strategies
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Fig. 7. Top: the R = 3 endmembers estimated by the unsupervised algorithm in the

Moffett Field image. Bottom: the corresponding estimated abundance maps.

detailed in this article ignore any spatial correlations between the observed pixels.
To improve the unmixing performance, intrinsic dependencies between the param-
eters of interest, e.g., the abundance vectors, could be exploited. Extending the
previous approaches, a hidden Markov model has been introduced in (Eches et al.
2011). Conversely, Mittelman et al. have proposed a nonparametric Bayesian algo-
rithm to jointly unmix and classify hyperspectral images (Mittelman et al. 2012).
Future works also include the design of efficient unmixing algorithms to analyze
hyperspectral data resulting from non-linear mixtures. Encouraging results have
been obtained in (Altmann et al. 2012; Halimi et al. 2011).

Part of this work was conducted in collaboration with Prof. C.-I. Chang, University of Maryland.
Some results were obtained during a “Young researcher” Project founded by GdR-ISIS. The
authors would also like to thank Jérôme Idier and Eric le Carpentier for fruitful discussion
regarding this work.
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